
Reinforcement Learning Project
Paper : ”Rainbow: Combining Improvements in Deep

Reinforcement Learning”

Amine Razig
ENSAE - Polytechnique

amine.razig@polytechnique.edu

Abdelilah Younsi
École Polytechnique

abdelilah.younsi@polytechnique.edu

Project summary

This project is based on the foundational academic article ”Rainbow: Combining
Improvements in Deep Reinforcement Learning”Matteo Hessel [2018]. The ob-
jective is to explore and analyze the various enhancements proposed for the DQN
algorithm, evaluating their theoretical and practical impacts.
The project is structured around three core elements. First, we summarize the
key contributions of Matteo Hessel [2018], detailing the integration of distinct
improvements in deep reinforcement learning. We provide theoretical insights
into the mathematical foundations of these techniques and their interactions.
Next, we conduct a detailed experimental study by reproducing the main results
from the paper. we analyze the effectiveness of the Rainbow agent compared to
its individual components. This step involves implementing the algorithm and
validating its performance across different games.
Finally, we extend the work by proposing our own experiments to evaluate the
approaches.
All our code, theoretical explanations, and experimental results are available in
this Github repository1, ensuring the reproducibility of our work.

1 Introduction

The objective of this report is to explore various concepts of reinforcement learning from a math-
ematical perspective, with somes expériments to conclude. We precise that our explanations are

1 GitHub Repository link : https : //github.com/arazig/Deep−Reinforcement− Learning

https://github.com/arazig/Deep-Reinforcement-Learning

intended to facilitate the understanding of the paper Rainbow: Combining Improvements in Deep
Reinforcement Learning, certains éléments resterons a préciser.

Below is an overview of the key topics covered in this report:

1. Fundamental Concepts: Agents, Environments, Rewards, and Markov Decision Processes
(MDPs)

2. Q-value Iteration and Learning

3. Transition from Tabular Q-Learning to Deep Networks

4. The Concept of Experience Replay

5. Target Networks and the Limitations of Deep Q-Networks (DQN)

6. The Six Core Components of the Rainbow Algorithm

7. The Rainbow Approach: Combining Multiple Improvements

8. Experimental Evaluation and Performance Analysis

9. Proof and Insights on Double Q-Learning Theoreme

2 Basic Concepts of Agents, Environments, Rewards, and MDPs

To introduce this report, we first explain the reinforcement Learning framework for learning through
interaction with an environment. The core components of RL include the agent, the environment,
states, actions, and rewards. These components are formalized using the concept of a Markov Deci-
sion Process (MDP), which provides a mathematical foundation for sequential decision-making.

2.1 Agent and Environment

In RL, an agent is an entity that interacts with an environment by taking actions based on the current
state. The environment responds to these actions by transitioning to a new state and providing a
reward to the agent. This interaction occurs over discrete time steps t = 0, 1, 2, At each time
step t, the agent observes the current state St ∈ S, where S is the set of all possible states. Based on
this observation, the agent selects an action At ∈ A(St), where A(St) is the set of available actions
in state St. The environment then transitions to a new state St+1 and provides a reward Rt+1 ∈ R,
whereR is the set of possible rewards.

2.2 Markov Decision Process

The interaction between the agent and the environment is typically modeled as a Markov Decision
Process. An MDP is defined by the tuple (S,A,P,R, γ), where:

• S is the state space,

• A is the action space,

• P is the state transition probability function,

• R is the reward function,

• γ ∈ [0, 1] is the discount factor.

The state transition probability function P defines the probability of transitioning to state s′ and
receiving reward r given the current state s and action a:

P(s′, r|s, a) = P(St+1 = s′, Rt+1 = r|St = s,At = a).

An important point is that the Markov property assumes that the future state and reward depend only
on the current state and action, and not on the history of past states and actions:

P(St+1 = s′, Rt+1 = r|St = s,At = a,Ht) = P(St+1 = s′, Rt+1 = r|St = s,At = a),

where Ht = (Rt, St−1, At−1, . . .) represents the history up to time t.

2

2.3 Rewards and Returns

The agent’s goal is to maximize the cumulative reward, or return, over time. The return Gt at time t
is defined as the sum of discounted future rewards:

Gt =

∞∑
t′=t+1

γt
′−t−1Rt′ ,

where γ is the discount factor that determines the importance of future rewards. A discount factor
γ close to 1 encourages the agent to prioritize long-term rewards, while a smaller γ focuses on
short-term rewards.

In some settings, the return may be defined over a finite horizon T :

GT
t =

T∑
t′=t+1

Rt′ .

Alternatively, in episodic settings, the return is well-defined if the episode terminates after a finite
number of steps.

2.4 Value Functions

To evaluate the performance of a policy π, which is a mapping from states to actions, we define the
state-value function vπ(s) and the action-value function qπ(s, a). The state-value function vπ(s)
represents the expected return when starting from state s and following policy π:

vπ(s) = Eπ[Gt|St = s].

Similarly, the action-value function qπ(s, a) represents the expected return when starting from state
s, taking action a, and then following policy π:

qπ(s, a) = Eπ[Gt|St = s,At = a].

These value functions satisfy the Bellman equation, which expresses the relationship between the
value of a state (or state-action pair) and the values of its successor states:

vπ(s) =
∑
a

π(a|s)
∑
s′,r

P(s′, r|s, a) [r + γvπ(s
′)] ,

qπ(s, a) =
∑
s′,r

P(s′, r|s, a)

[
r + γ

∑
a′

π(a′|s′)qπ(s′, a′)

]
.

2.5 Optimal Policy and Value Functions

The goal of RL is to find an optimal policy π∗ that maximizes the expected return for all states. The
optimal state-value function v∗(s) and the optimal action-value function q∗(s, a) are defined as:

v∗(s) = max
π

vπ(s),

q∗(s, a) = max
π

qπ(s, a).

These optimal value functions satisfy the Bellman optimality equation:

v∗(s) = max
a

∑
s′,r

P(s′, r|s, a) [r + γv∗(s′)] ,

q∗(s, a) =
∑
s′,r

P(s′, r|s, a)
[
r + γmax

a′
q∗(s′, a′)

]
.

The optimal policy π∗ can be derived from the optimal action-value function q∗ by selecting the
action that maximizes q∗(s, a) for each state s:

π∗(s) =a q∗(s, a).

3

To recap what we said in this recall of the basics of RL, the MDP framework provides a rigor-
ous mathematical foundation for RL, where the agent interacts with the environment to maximize
cumulative rewards. The concepts of value functions and the Bellman equations are central to un-
derstanding how RL algorithms, such as Q-learning and Deep Q-Networks (DQN), operate.

These concepts will be essential for understanding the Rainbow algorithm, which combines several
improvements to DQN to achieve state-of-the-art performance in RL tasks. Indeed, to understand
well the purpose of the method proposed in the paper of interest Matteo Hessel [2018] we will, in
the next parts of the report, continue to explain fondamentals reinforcement learning concepts.

3 Learning by Q-value Iteration

3.1 Q-Value Iteration Process

Q-value iteration is an iterative algorithm for computing the optimal action-value function Q∗(s, a),
which represents the maximum expected cumulative reward achievable by taking action a in state
s and subsequently following the optimal policy. The process refines Q-values using the Bellman
optimality equation:

Qk+1(s, a) = E
[
r + γmax

a′
Qk(s

′, a′)
]

3.2 Exploration vs. Exploitation

Balancing exploration and exploitation is critical in reinforcement learning to avoid suboptimal poli-
cies. This dilemma arises because an RL agent must decide between trying new actions to discover
their effects (exploration) and leveraging known information to maximize rewards (exploitation).
Intuitively speaking, if a person visits a new city and wants to find the best restaurant, he might try
different restaurants (exploration) to discover which ones offer the best food and experience. This
helps him gather information about various options. Once he’s found a restaurant he likes, he keeps
going back to it (exploitation) because he knows it’s good. This maximizes his immediate satisfac-
tion based on past experiences. However, too much exploitation can cause him to miss out on even
better options that he hasn’t discovered yet. Therefore, balancing these two strategies is essential for
optimizing outcomes in both reinforcement learning and real-life decision-making.

3.2.1 Strategies for Balancing Exploration and Exploitation

In the RL modelisations, balancing exploration and exploitation is crucial for discovering optimal
policies, and two widely-used strategies for achieving this balance are the ϵ-Greedy Strategy and
Boltzman Exploration, each offering distinct mechanisms to navigate the trade-off between explor-
ing new actions and exploiting known rewards.

• ϵ-Greedy Strategy:
– With probability ϵ, select a random action (exploration).
– With probability 1− ϵ, select a∗ = argmaxaQ(s, a) (exploitation).

• Boltzmann (Softmax) Exploration:
– Uses a softmax distribution to select actions based on their Q-values:

P (a|s) = eQ(s,a)/τ∑
a′ e

Q(s,a′)/τ

– The temperature parameter τ controls the randomness:
* High τ : Actions are chosen more uniformly, encouraging exploration.
* Low τ : Actions with higher Q-values are favored, encouraging exploitation.

3.3 Temporal Difference (TD) Learning and Q-Learning

Temporal Difference learning is a fundamental concept in reinforcement learning that combines
ideas from Monte Carlo sampling and dynamic programming. It updates Q-values incrementally

4

using TD errors, which measure the difference between the current Q-value estimate and the TD
target. This approach allows for more efficient learning compared to methods that wait for the final
outcome to update values.

• The TD error is given by the difference between the current Q-value estimate and the TD
target term, the formula is given by :

δ = r + γmax
a′

Q(s′, a′)︸ ︷︷ ︸
TD target

− Q(s, a)︸ ︷︷ ︸
Q−values estimate

• Q-Learning Update Rule: The Q-learning update rule adjusts Q-values toward the TD
target using a learning rate α. The update rule is:

Q(s, a)← Q(s, a) + αδ

Here, α determines how much the new information (TD error) influences the Q-value up-
date. A higher α means the agent learns more quickly from new experiences but can also
lead to instability if α is too high. This incremental update helps the agent gradually im-
prove its policy over time.

Algorithm 1 Temporal Difference Error and Q-Learning Update Rule

0: Input: State s, Action a, Reward r, Next state s′, Learning rate α, Discount factor γ
0: Output: Updated Q-value Q(s, a)
0: Compute TD Error:
0: δ ← r + γmax

a′
Q(s′, a′)−Q(s, a) {δ is the TD error}

0: where:
0: r + γmax

a′
Q(s′, a′) {TD target}

0: Q(s, a) {Current Q-value estimate}
0: Update Q-value:
0: Q(s, a)← Q(s, a) + αδ {Q-Learning update rule}
0: where:
0: α {Learning rate controlling update magnitude}
0: δ {TD error}
0: Return: Updated Q(s, a) =0

• Off-Policy Learning: Q-learning is an off-policy method, meaning it learns the optimal
policy while following a behavior policy, such as an ϵ-greedy policy. This allows for flexi-
ble exploration.

4 Replacing Tabular Q-Learning with Deep Networks

4.1 Limitations of Tabular Q-Learning

Tabular Q-learning stores Q-values in a lookup table, where each entry Q(s, a) corresponds to a
unique state-action pair. While effective for small, discrete environments (e.g., grid worlds with 10
states), it fails catastrophically in large or continuous spaces:

• Scalability Issues: The table size grows exponentially with the number of states and ac-
tions. For example:

– Atari games (e.g., Pong) have ∼ 101000 possible screen states. Storing Q-values for
all combinations is impossible.

– Real-world robotics tasks involve continuous sensor data (e.g., lidar, camera feeds),
making tabular representation infeasible.

• No Generalization: Tabular methods cannot generalize across similar states. For instance,
if an agent learns to avoid walls in one maze layout, it cannot transfer that knowledge to a
slightly different maze.

5

4.2 Deep Q-Networks : Neural Networks as Function Approximators

In 2015, a new approach was presented by Volodymyr Mnih [2015]. DQN replaces the Q-table with
a neural network Q(s, a; θ), where θ represents network weights. The network takes a state s (e.g.,
raw pixels) as input and outputs Q-values for all actions.

Generalization: The network learns patterns (e.g., edges, colors, object positions) from pixels and
applies them to unseen states. For example, if a DQN learns that ”walls are bad” in one maze, it can
avoid walls in any maze with similar visual features.

Scalability: The network’s fixed number of parameters (e.g., 1 million weights) can represent Q-
values for exponentially many states.

As an example for this in Breakout, the DQN learns to associate the ball’s trajectory with high
Q-values for moving the paddle toward it, even if the exact pixel configuration is new.

4.3 How DQN Solves Scalability

A major result of the paper Volodymyr Mnih [2015] is the highlighting that DQNs allow us to lever-
age neural networks’ ability to compress state information. Indeed, the achitecture of the networks
provide two main effects :

The first one is the parameter sharing: Similar states (e.g., two frames of Pong where the ball is
slightly shifted) activate overlapping network weights, allowing the agent to share knowledge across
states.

The second is the feature extraction: Convolutional layers automatically detect hierarchical pat-
terns (e.g., edges → shapes → game objects), reducing reliance on handcrafted state representations.

5 Concept of Experience Replay

5.1 Problem of correlated Data and Non-I.I.D. Learning

In online Q-learning, transitions are generated sequentially (e.g., consecutive frames in a game).
This leads to two critical issues:

• Consecutive transitions (st, at, rt, st+1) and (st+1, at+1, rt+1, st+2) are highly correlated.
For example, in Pac-Man, adjacent frames differ only slightly as the agent moves. As
a consequence, Gradient updates become biased toward recent experiences, destabilizing
training. The network “forgets” older patterns and overfits to recent ones.

• Stochastic gradient descent assumes training data is independent and identically distributed
(i.i.d.). Sequential transitions violate this assumption, leading to inefficient and oscillatory
updates.

5.2 Solution 1: Experience Replay

Experience replay addresses these issues by storing transitions (st, at, rt, st+1) in a replay buffer
D of fixed capacity N . During training, mini-batches B are sampled uniformly from D, breaking
temporal correlations.

5.3 Solution 2: Prioritized Experience Replay

Standard experience replay samples transitions uniformly from the replay bufferD. However, not all
transitions are equally valuable: some experiences are more ”surprising” or informative than others.
Prioritized Experience Replay addresses this by prioritizing transitions based on their temporal
difference error δ, which measures how much the agent’s current Q-value estimate deviates from the
target, as we explained before.

6

5.3.1 Motivation for Prioritization

• Learning Efficiency: Transitions with high |δ| (e.g., rare successes or catastrophic failures)
provide more learning signal. Prioritizing these accelerates convergence.

• Adaptive Focus: The agent spends more computational resources on experiences it cur-
rently misunderstands.

5.3.2 Mathematical Formulation

Let the priority pi of transition i be proportional to its TD error:

pi = |δi|+ ϵ

where ϵ is a small constant to ensure non-zero probabilities.
Transitions are sampled with probability:

P (i) =
pαi∑
j p

α
j

where α ∈ [0, 1] controls prioritization strength (α = 0 recovers uniform sampling).

6 Concept of Target Networks and Limitations of DQN

6.1 Target Networks in Deep Q-Learning

In Deep Q-Networks, the agent uses a neural network Q(s, a; θ) with parameters θ to approximate
Q-values. However, directly updating Q(s, a; θ) using its own predictions as targets introduces
instability. This is because the TD target r + γmaxa′ Q(s′, a′; θ) depends on the same parameters
θ being optimized, creating a feedback loop akin to ”chasing one’s own tail.”

6.1.1 Solution: Target Networks

To stabilize training, DQN employs a target network Q(s, a; θ−), which is a delayed copy of the
online network Q(s, a; θ). The target network’s parameters θ− are updated periodically (e.g., every
C steps) by copying θ, while the online network θ is updated continuously.

The TD target is now computed using the target network:

y = r + γmax
a′

Q(s′, a′; θ−)

The loss function becomes:

L(θ) = E(s,a,r,s′)∼D

[
(y −Q(s, a; θ))

2
]

7 The Six Components of Rainbow

So far, we’ve introduced the mathematical intuition behind the main concepts widely used in RL.
We can now focus on the 6 algorithms that make up the Rainbow model. The main idea is to explain
how the strengths of each method are combined by integrating the different components into a single
model.

First, we’ll concentrate on the theoretical explanation of the model. Then, in a second step, we’ll
describe our experiments and comment on our results.

Let’s start with an overview of the six key components of Rainbow.

Double Q-learning

This notion of Double Q-leanring was first introduced by Hado van Hasselt [2016]. The idea is the
following. Their paper addresses the overestimation bias in Q-learning, particularly when combined
with deep neural networks. So, the authors propose Double DQN, a modification that reduces this
bias and improves performance.

7

The principal motivation behind the approach of DQN is a phenomen of overestimation in Q-
learning.

Indeed, since the Q-learning’s target is given by:

Y Q
t = Rt+1 + γmax

a
Q(St+1, a; θt),

which uses the same values for both action selection and evaluation, leading to overestimation. This
overestimation is represented by the theorem 1. Based on the paperHado van Hasselt [2016] we also
reformulate the proof of this theorem :

Theorem 1: Even with unbiased estimates, the maximum Q-value is biased upward:

max
a

Qt(s, a) ≥ V∗(s) +

√
C

m− 1
,

where C is the variance of the Q-value estimates and m is the number of actions.

This overestimation bias, formalized in Theorem 1, highlights the need for methods like Double
Q-learning to decouple selection and evaluation.

So, as we said, the idea behind DQN is to decouple action selection and evaluation using two sets of
weights θ and θ′, it leads us to the following formula:

Y DoubleQ
t = Rt+1 + γQ(St+1,aQ(St+1, a; θt); θ

′
t).

This reduces overestimation by using θ′t to evaluate the action selected by θt. Then, the authors
adapt Double Q-learning to DQN by using the target network θ− for evaluation. This modification
retains the DQN architecture while reducing overestimation:

Y DoubleDQN
t = Rt+1 + γQ(St+1,aQ(St+1, a; θt); θ

−
t).

Double DQN successfully mitigates the overestimation bias in Q-learning, leading to more accurate
value estimates and improved performance in complex environments.

Prioritized Replay in Rainbow

While Section 5.3 introduced prioritized experience replay (PER) using TD errors, Rainbow adapts
this mechanism to align with its distributional learning framework. Instead of prioritizing transi-
tions based on 1-step TD errors δ, Rainbow uses KL divergence between the predicted and target
return distributions as the priority signal. This modification better reflects the agent’s uncertainty in
distributional value estimates.

For a transition with n-step return d
(n)
t , the priority is computed as:

pt ∝
(
DKL

(
Φd

(n)
t ∥dt

))ω
,

where ω controls the prioritization strength (ω = 1 recovers proportional prioritization). This KL-
based priority directly measures how ”surprising” the transition is under the current distributional
model, enabling more robust credit assignment in stochastic environments.

Rainbow retains two key PER components:

Stochastic Prioritization: Transitions are sampled with probability P (i) ∝ pαi , where α balances
uniform vs. prioritized sampling.

Importance Sampling (IS): Updates are weighted by wi =
(

1
N ·P (i)

)β
to correct sampling bias,

with β annealed from βinitial to 1 during training.

This integration ensures that transitions contributing most to distributional errors (e.g., partial ob-
servability or rare events) are replayed more frequently, while IS weights stabilize convergence.
Combined with multi-step returns, KL prioritization allows Rainbow to focus on transitions where
both immediate rewards and long-term value distributions are poorly modeled.

8

Dueling Network Architecture

The dueling network architecture introduces an additional structural modification to traditional Q-
networks by decoupling value estimation from advantage learning. The advantage learning help
choose an action that results in a better state-value function compared to the mean contribution
which is the value function itself. This architectural innovation, first proposed by Ziyu Wang [2016],
addresses fundamental challenges in credit assignment and learning efficiency through explicit sep-
aration of state valuation and action-dependent advantages.

The core insight comes from the observation that many states require precise estimation of state
value without needing detailed action discrimination. The network achieves this through parallel
streams (networks) estimating the state value function V (s) and advantage function A(s, a), which
combine to produce Q-values through a specialized aggregation layer. The advantage function plays
a crucial role in measuring the relative importance of each action compared to the state’s average
value:

Aπ(s, a) = Qπ(s, a)− V π(s)

Through Value and advantage saliency maps, this decomposition allows the network to learn which
states are intrinsically valuable (in the long run because of the visual patterns the value stream learns)
while efficiently identifying actions that outperform the average behavior in those states (in the short
run because of the visual patterns the advantage stream learns).

The network implements this through twin streams emerging from shared convolutional features:

Q(s, a; θ, α, β) = V (s; θ, β) +

(
A(s, a; θ, α)− 1

|A|
∑
a′

A(s, a′; θ, α)

)

This aggregation mechanism resolves a critical identifiability challenge inherent in the additive de-
composition Q = V + A. The naive formulation suffers from unobservability - any constant shift
in advantage values could be offset by opposing changes in state value estimates, leaving Q-values
unchanged. The mean subtraction operation enforces a natural constraint on the advantage function:

Identifiability Lemma: For any Q-function decomposition Q(s, a) = V (s) + A(s, a), the
solution can be unique when Ea∼π[A(s, a)] = 0. The mean subtraction operator in the equation
above satisfies this condition by construction.

This constraint stabilizes learning by anchoring the value stream to estimate true state values while
allowing the advantage stream to capture relative action preferences. The architecture retains the
original Q-learning interface, enabling seamless integration with existing reinforcement learning
algorithms while providing an efficient State Valuation, a robust action selection and lead to better
generalization. In fact :

• The shared value estimates accelerate learning in states where action choices have minimal
impact

• The advantage stream’s relative measurements reduce sensitivity to small Q-value fluctua-
tions

• And separate value estimation prevents overfitting to transient action-specific variations

Distributional Reinforcement Learning

Distributional Reinforcement Learning (Distributional RL) redefines the value-based learning
paradigm by modeling the full probability distribution of returns Z(s, a) rather than merely esti-
mating its expectation Q(s, a) = E[Z(s, a)]. Introduced by Marc G. Bellemare [2017], this ap-
proach captures the intrinsic uncertainty of future rewards, enabling more robust policy evaluation
and mitigation of overestimation bias.

9

The return distribution is approximated using a fixed discrete support with Natoms ∈ N+ atoms
spanning a predefined range [vmin, vmax]. The support is a vector of equally spaced values:

zi = vmin + (i− 1)
vmax − vmin

Natoms − 1
, for i ∈ {1, . . . , Natoms}.

For each state-action pair (St, At), the distribution dt is parameterized by a probability mass vector
pθ(St, At) = [p1θ, . . . , p

Natoms
θ], where piθ represents the likelihood of the return being zi. These

probabilities are predicted by a neural network, with softmax normalization applied independently
across atoms for each action to ensure

∑
i p
i
θ(St, At) = 1.

Distributional Bellman Update. The return distribution satisfies a distributional Bellman equa-
tion:

Z(St, At)
D
= Rt+1 + γt+1Z(St+1, A

∗
t+1),

where A∗
t+1 =a E[Z(St+1, a)] is the greedy action. To implement this recursively:

1. Target Action Selection: Compute A∗
t+1 using a target network θ:

A∗
t+1 =a

Natoms∑
i=1

zi · pi
θ
(St+1, a).

2. Shift and Scale: Apply the Bellman update to the target distribution:

Ẑi = Rt+1 + γt+1z
i for each atom zi.

3. Projection: Map the transformed atoms {Ẑi} onto the fixed support using an L2-
projection operator Φ. This is because the applied equivalent Bellman operator makes
the support of the new value distributions and the old one disjoint.

Learning Objective. The network parameters θ are optimized by minimizing the Kullback-
Leibler (KL) divergence between the projected target distribution Φd′t and the predicted distribution
dt:

L(θ) = E [DKL (Φd′t ∥ dt)] ,

where d′t ≡ (Rt+1 + γt+1z, pθ(St+1, a
∗
t+1)) and dt = (z, pθ(St, At)). This reduces to cross-

entropy loss over the discrete support, enabling efficient optimization.

Below is the algorithm in the originale paper Marc G. Bellemare [2017]:

Algorithm 2 Categorical Algorithm
Require: A transition st, at, rt, st+1, γt ∈ [0, 1]
Q(st+1, a) :=

∑
i zipi(st+1, a)

a∗ ← argmaxaQ(st+1, a)
mi = 0, i ∈ {0, . . . , N − 1}
for j ∈ {0, . . . , N − 1} do

Compute the projection of T̂ zj onto the support {zi}
T̂ zj ← [rt + γtzj]

Vmax

Vmin

bj ← (T̂ zj − Vmin)/∆z # bj ∈ [0, N − 1]
l← ⌊bj⌋, u← ⌈bj⌉
Distribute probability of T̂ zj
ml ← ml + pj(st+1, a

∗)(u− bj)
mu ← mu + pj(st+1, a

∗)(bj − l)
end for
return −

∑
imi log pi(st, at) #Cross-entropy loss

=0

10

Multi-step Learning

Multi-step learning enhances temporal credit assignment by considering sequences of future rewards
when updating Q-value estimates. While traditional Q-learning uses a 1-step temporal difference
(TD) target, Rainbow employs n-step returns to strike a balance between the high bias of 1-step
methods and the high variance of Monte Carlo rollouts. This approach accelerates reward propaga-
tion while maintaining stable learning.

n-Step Return Target

For a transition at time t, the n-step return G
(n)
t aggregates rewards over n steps and bootstraps from

the value of the state n steps later:

G
(n)
t =

n−1∑
k=0

γkRt+k+1 + γnmax
a′

Q(St+n, a
′; θ−),

where θ− denotes the target network parameters. This provides a richer learning signal by directly
incorporating observed rewards while retaining the long-term value estimate.

Integration with Distributional RL

In Rainbow’s distributional formulation, the n-step target becomes a distribution over returns. Let
Z(St+n, a

∗) denote the return distribution for the optimal action a∗ in state St+n, selected using the
online network θ. The target distribution is constructed by:

1. Accumulating the discounted n-step rewards:

R
(n)
t =

n−1∑
k=0

γkRt+k+1.

2. Shifting and scaling the bootstrap distribution Z(St+n, a
∗; θ−) by γn.

3. Projecting the resulting distribution onto the predefined support .

The projected target distribution Φd
(n)
t is then used to compute the KL divergence loss.

Noisy Nets

Finally, the idea behind the last extension of DQN is to mprove exploration by adding parametric
noise to the weights of a neural network. Unlike traditional exploration methods like ϵ-greedy or
entropy regularization, which rely on random perturbations of the agent’s actions, NoisyNet intro-
duces structured noise directly into the network’s parameters. By doing this, we allows the agent to
explore more efficiently by inducing state-dependent stochasticity in the policy.

Here is a brief explanation of working of this method. First, in a standard neural network, a linear
layer is defined as:

y = wx+ b,

where x is the input, w is the weight matrix, b is the bias, and y is the output.

In NoisyNet, the weights and biases are replaced with noisy versions:

y = (µw + σw ⊙ εw)x+ (µb + σb ⊙ εb),

where:

• µw and µb are the learnable mean parameters for weights and biases,

• σw and σb are the learnable standard deviation parameters,

• εw and εb are noise variables sampled from a fixed distribution (e.g., Gaussian),

• ⊙ represents element-wise multiplication.

11

Figure 1: Graphical representation of a noisy linear layer(source : Meire Fortunato [2018]). The
input x corresponds to the state s in the rest of the report. The parameters µw, µb, σw, and σb

are learnable, while εw and εb are noise variables. The noisy weights and biases are computed as
w = µw + σw ⊙ εw and b = µb + σb ⊙ εb, respectively. The output y is computed as y = wx+ b.

In Deep Q-Networks, NoisyNet replaces the ϵ-greedy exploration strategy. Instead of randomly
selecting actions with probability ϵ, the agent greedily selects actions based on the noisy Q-values
generated by the network.

And so, the loss function for NoisyNet-DQN is:

L̄(ζ) = Eε,ε′
[
E(s,a,r,y)∼D

[(
r + γmax

b∈A
Q(y, b, ε′; ζ−)−Q(s, a, ε; ζ)

)2
]]

,

where:

• ζ represents the parameters of the noisy network,
• ε and ε′ are noise samples for the online and target networks,
• D is the replay buffer,
• Q(s, a, ε; ζ) is the noisy Q-value function.

8 The Rainbow approach

Matteo Hessel [2018] integrate all the aforementioned components into a single agent, which we
call Rainbow. Below, we explain how each component is integrated and how they work together.

First, we replace the 1-step distributional loss with a multi-step variant. The target distribution is
constructed by contracting the value distribution in St+n according to the cumulative discount and
shifting it by the truncated n-step discounted return. The target distribution is defined as:

d
(n)
t = (R

(n)
t + γ(n)z, pθt+n

(St+n, a
∗
t+n)),

where R
(n)
t is the truncated n-step discounted return, γ(n) is the cumulative discount, and a∗t+n is

the greedy action selected by the online network.

The resulting loss is the Kullback-Leibler (KL) divergence between the projected target distribution
Φzd

(n)
t and the predicted distribution dt:

L = DKL(Φzd
(n)
t ∥dt),

where Φz is the projection onto the support z.

We combine the multi-step distributional loss with double Q-learning by using the greedy action
in St+n selected according to the online network as the bootstrap action a∗t+n. This action is then
evaluated using the target network, which helps reduce overestimation bias.

In standard proportional prioritized replay, transitions are prioritized based on the absolute TD error.
However, in Rainbow, we prioritize transitions using the KL loss, which is the loss being minimized
by the algorithm:

pt ∝
(
DKL(Φzd

(n)
t ∥dt)

)ω
,

12

where ω is a hyperparameter that controls the degree of prioritization. Using the KL loss as a priority
is more robust in noisy stochastic environments because the loss can continue to decrease even when
the returns are not deterministic.

The network architecture is a dueling network adapted for use with return distributions. The net-
work has a shared representation fξ(s), which is fed into two streams:

• A value stream vη with Natoms outputs.
• An advantage stream aψ with Natoms ×Nactions outputs.

For each atom zi, the value and advantage streams are aggregated as in dueling DQN, and then
passed through a softmax layer to obtain the normalized parametric distributions used to estimate
the return distributions:

pθ(s, a) =
exp(viη(ϕ) + aiψ(ϕ, a)− āiψ(s))∑
j exp(v

j
η(ϕ) + ajψ(ϕ, a)− ājψ(s))

,

where ϕ = fξ(s) and āiψ(s) =
1

Nactions

∑
a′ a

i
ψ(ϕ, a

′).

Finally, we replace all linear layers in the network with their noisy equivalents, as described in
Equation (4). Within these noisy linear layers, we use factorised Gaussian noise to reduce the num-
ber of independent noise variables. This allows the agent to explore more efficiently by automatically
tuning the noise parameters via gradient descent.

Summary

Rainbow integrates the following components:

• Multi-step distributional loss for more accurate value estimation.
• Double Q-learning to reduce overestimation bias.
• Prioritized experience replay using the KL loss for robust prioritization.
• Dueling network architecture adapted for return distributions.
• Noisy networks for efficient exploration.

9 Experiments

General performance of rainbow

According to the figure presented in the original paper, Rainbow significantly outperforms the other
methods in terms of human-median normalized score, achieving higher performance across a wide
range of environments. This demonstrates Rainbow’s superior ability to leverage a combination of
advancements in deep reinforcement learning for better learnng.

In the next section we present our personal experiments, we aim to explore Rainbow performance
and try to understand the effect of each of its components.

13

Our ablation experiment

We conducted an ablation study on the Rainbow reinforcement learning model to analyze the im-
pact of removing its key components on training performance over 20,000 frames in the CartPole
environment. The results are summarized in the figure.

Our findings indicate that Categorical DQN is the most critical component, as its removal drastically
reduces performance. n-step returns and the Dueling network also play significant roles, as their
absence leads to noticeable drops in learning efficiency. In contrast, Double Q-learning, Noisy
layers, and Prioritized Experience Replay contribute to improved stability and performance but are
not strictly essential for achieving high scores in this task.

Through this study, we were able to see how different components of Rainbow contribute to training
efficiency, especially in a simple environment like CartPole. Some elements, like Categorical DQN,
turned out to be crucial, while others, such as Noisy Layers or Prioritized Experience Replay, mainly
helped with stability but were not absolutely necessary.

That being said, CartPole is quite a basic game, and Rainbow’s advantages become even more
evident in more complex environments. To explore this further, we adapted a fully functional code
on our GitHub page2, making it compatible with the Gymnasium library. This ensures that all our
experiments are fully reproducible and easy to run.

We also test Rainbow on more challenging games like LunarLander and Pac-Man, where the impact
of each component becomes even clearer. These experiments helped us better understand which
mechanisms are truly essential when dealing with more complex learning tasks.

Figure 2: Ablation studies on the Rainbow model. These plots show the effect of removing certain
components on training over 20,000 frames on CartPole.

Atari Pacman Experiment

To further evaluate Rainbow’s performance in more complex environments, we tested the algorithm
on the classic Atari game Pacman. We ran the Rainbow agent for 10 epochs, with each epoch con-
sisting of 1000 steps. The results of this experiment can be visualized in the video folder available
in our GitHub repository. The video format provides a more intuitive understanding of the agent’s

2 GitHub Repository link : https : //github.com/arazig/Deep−Reinforcement− Learning

14

https://github.com/arazig/Deep-Reinforcement-Learning

behavior and learning progress compared to static performance graphs, especially in a visually dy-
namic game like Pacman. Interested readers can increase the number of epochs and steps to observe
the agent’s continued improvement, eventually reaching a point where it successfully wins the game.
This experiment demonstrates Rainbow’s capability to learn effective policies in environments with
complex visual inputs, sparse rewards, and challenging dynamics.

10 Conclusion

In this report, we investigated the Rainbow algorithm, which integrates six key improvements to
DQN: Double Q-learning, Prioritized Experience Replay, Dueling Networks, Distributional RL,
Multi-step Learning, and Noisy Networks. Our theoretical analysis detailed how these components
address different limitations of traditional DQN while working synergistically.

Our experimental results confirmed that Rainbow outperforms both vanilla DQN and individual
components across various environments. Our ablation studies identified Categorical DQN (Dis-
tributional RL) as the most critical component, followed by n-step returns and Dueling Networks.
Experiments on CartPole, LunarLander, and Pac-Man demonstrated Rainbow’s effectiveness in en-
vironments of increasing complexity.

These findings emphasize the value of combining multiple algorithmic improvements rather than
focusing on isolated techniques. Rainbow’s success illustrates how addressing various challenges
in reinforcement learning—from exploration to overestimation to credit assignment—yields com-
pounding benefits when integrated properly.

Future work could explore extending Rainbow to continuous action spaces or combining it with
recent innovations such as transformer architectures or hierarchical approaches. Our implementation
provides a foundation for further research and applications in reinforcement learning.

15

Appendix

Proof of Theorem 1

Proof. We aim to show that for a state s where all true optimal action values are equal, i.e.,
Q∗(s, a) = V∗(s), and the Q-value estimates Qt(s, a) are unbiased but not all correct, the maxi-
mum Q-value is biased upward. Specifically:

max
a

Qt(s, a) ≥ V∗(s) +

√
C

m− 1
,

where C = 1
m

∑
a(Qt(s, a)−V∗(s))

2 is the variance of the Q-value estimates, and m is the number
of actions.

Defintion of the errors :

First, we define the errors. Let ϵa = Qt(s, a)− V∗(s) be the estimation error for each action a. By
assumption, the errors are unbiased: ∑

a

ϵa = 0,

and the variance of the errors is:

1

m

∑
a

ϵ2a = C.

The idea of the proof is to reason by the absurd. So we suppose, for contradiction, that the maximum

error is less than
√

C
m−1 , i.e.,

max
a

ϵa <

√
C

m− 1
.

Let {ϵ+i } be the set of positive errors (size n) and {ϵ−j } be the set of strictly negative errors (size
m− n), such that {ϵa} = {ϵ+i } ∪ {ϵ

−
j }.

Then we analyze the cases : If n = m, all errors are non-negative. However, since
∑
a ϵa = 0, this

implies ϵa = 0 for all a, which contradicts
∑
a ϵ

2
a = mC. Therefore, n ≤ m− 1.

Bound of the Positive and Negative Errors :

For the positive errors {ϵ+i }, we have:

n∑
i=1

ϵ+i ≤ nmax
i

ϵ+i < n

√
C

m− 1
.

Using the constraint
∑
a ϵa = 0, the sum of the absolute values of the negative errors {ϵ−j } satisfies:

m−n∑
j=1

|ϵ−j | < n

√
C

m− 1
.

This implies:

max
j
|ϵ−j | < n

√
C

m− 1
.

16

Hölder’s Inequality

We use Hölder’s inequality, we bound the sum of squares of the negative errors:

m−n∑
j=1

(ϵ−j)
2 ≤

m−n∑
j=1

|ϵ−j | ·max
j
|ϵ−j | < n

√
C

m− 1
· n
√

C

m− 1
=

Cn2

m− 1
.

The total sum of squares of all errors is:

m∑
a=1

ϵ2a =

n∑
i=1

(ϵ+i)
2 +

m−n∑
j=1

(ϵ−j)
2 < n

C

m− 1
+

Cn2

m− 1
=

Cn(n+ 1)

m− 1
.

Since n ≤ m− 1, we have:

m∑
a=1

ϵ2a < mC,

which contradicts the assumption
∑
a ϵ

2
a = mC. Therefore, our initial assumption is false, and:

max
a

ϵa ≥
√

C

m− 1
.

Tightness of the Bound

The bound is tight because equality holds when:

ϵa =

√
C

m− 1
for a = 1, . . . ,m− 1,

and

ϵm = −
√
(m− 1)C.

This satisfies both
∑
a ϵa = 0 and

∑
a ϵ

2
a = mC.

The proof demonstrates that even with unbiased Q-value estimates, the maximum Q-value is bi-
ased upward due to the inherent structure of the maximization operator in Q-learning. This result
motivates the need for methods like Double Q-learning to mitigate overestimation.

17

Experiments on different games

Figure 3: Lunarlander Image 1 Figure 4: Lunarlander Image 2

Figure 5: Cartpole

Figure 6: Acrobot Image 1 Figure 7: Acrobot Image 2

18

Figure 8: Pacman Image 1 Figure 9: Pacman Image 2

GitHub

Instructions to run the code are available in the README file of the following github:

GitHub Repository link : https : //github.com/arazig/Deep−Reinforcement−Learning

References
David Silver Hado van Hasselt, Arthur Guez. Deep reinforcement learning with double q-learning.

AAAI, 30, 2016.

Rémi Munos Marc G. Bellemare, Will Dabney. A distributional perspective on reinforcement learn-
ing. ICML, 2017.

Hado van Hasselt Tom Schaul Georg Ostrovski Will Dabney Dan Horgan Bilal Piot Mohammad
Azar David Silver Matteo Hessel, Joseph Modayil. Rainbow: Combining improvements in deep
reinforcement learning. 2018.

Bilal Piot Jacob Menick Ian Osband Alex Graves Vlad Mnih Remi Munos Demis Hassabis Olivier
Pietquin Charles Blundell Shane Legg Meire Fortunato, Mohammad Gheshlaghi Azar. Noisy
networks for exploration. ICLR, 2018.

Ioannis Antonoglou David Silver Tom Schaul, John Quan. Prioritized experience replay. ICLR,
2016.

David Silver Andrei A. Rusu Joel Veness Marc G. Bellemare Alex Graves Martin Riedmiller An-
dreas K. Fidjeland Georg Ostrovski Stig Petersen Charles Beattie Amir Sadik Ioannis Antonoglou
Helen King Dharshan Kumaran Daan Wierstra Shane Legg Demis Hassabis Volodymyr Mnih,
Koray Kavukcuoglu. Human-level control through deep reinforcement learning. Nature, 518,
2015.

Matteo Hessel Hado van Hasselt Marc Lanctot Nando de Freitas Ziyu Wang, Tom Schaul. Dueling
network architectures for deep reinforcement learning. ICML, 2016.

19

https://github.com/arazig/Deep-Reinforcement-Learning

	Introduction
	Basic Concepts of Agents, Environments, Rewards, and MDPs
	Agent and Environment
	Markov Decision Process
	Rewards and Returns
	Value Functions
	Optimal Policy and Value Functions

	Learning by Q-value Iteration
	Q-Value Iteration Process
	Exploration vs. Exploitation
	Strategies for Balancing Exploration and Exploitation

	Temporal Difference (TD) Learning and Q-Learning

	Replacing Tabular Q-Learning with Deep Networks
	Limitations of Tabular Q-Learning
	Deep Q-Networks : Neural Networks as Function Approximators
	How DQN Solves Scalability

	Concept of Experience Replay
	Problem of correlated Data and Non-I.I.D. Learning
	Solution 1: Experience Replay
	Solution 2: Prioritized Experience Replay
	Motivation for Prioritization
	Mathematical Formulation

	Concept of Target Networks and Limitations of DQN
	Target Networks in Deep Q-Learning
	Solution: Target Networks

	The Six Components of Rainbow
	The Rainbow approach
	Experiments
	Conclusion

