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Abstract

This report will mainly be a significant summary
of the the paper Probabilistic Weather Forecast-
ing with Hierarchical Graph Neural Networks
(Oskarsson et al., 2024). We will provide an
outline the main contributions, an overview of
the methodology and some key experiments de-
scribed in the paper.

All our code, theoretical explanations, and experi-
mental results are available in this Github reposi-
tory1, ensuring the reproducibility of our work.

1. Motivation
Traditional weather forecasting begins by capturing
a snapshot of Earth’s current atmospheric conditions.
Gathering data from satellites, weather stations, and buoys
around the world, capturing cloud images, and measuring
temperature, pressure, wind speed, and humidity. These
data are then fed into supercomputers that generate a 3D
grid twin of the atmosphere. These computers finally
perform complex physics calculations to predict how these
data interact, resulting in a weather forecast.

Despite this sophisticated process, the initial 3D grid of the
atmosphere can never perfectly replicate reality due to data
gaps, leading to increasing uncertainty in forecasts over time.
To address this challenge, the idea is to employ ensemble
forecasting, tweaking the initial data to produce up to many
forecasts, ensemble forecasting, thus measuring uncertainty.
Still, such a way of generating weather ensemble forecasts
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is computationally expensive, often leading to restrict the
spatial resolution or the ensemble size and, consequently,
reducing accuracy in representing the distribution.

(Oskarsson et al., 2024) address this challenge by propos-
ing a probabilistic weather forecasting model. The goal
is to model the full distribution p(X1:T |X−1:0, F 1:T ) of
future weather states. Where, X1:T represents the se-
quence of future weather states, X−1:0 denotes the initial
conditions, and F 1:T includes the forcing inputs such as
time of day and static geographical features. The model
leverages hierarchical graph neural networks to efficiently
sample ensemble forecasts, where each ensemble member
X1:T ∼ p(X1:T |X−1:0, F 1:T ) represents a possible trajec-
tory of weather states.

The primary objective of this work, (Oskarsson et al., 2024),
is to develop a framework that not only provides accurate
deterministic forecasts but also quantifies the uncertainty
in these predictions. By generating ensemble forecasts,
the model allows for a more comprehensive understanding
of potential weather scenarios, enabling better decision-
making and risk assessment. This approach is particularly
valuable for investigating extreme weather events, where
understanding the range of possible outcomes is crucial.

2. Methodology
In the following sections, we will explain the details of the
model used, including the hierarchical graph neural network
architecture, the probabilistic formulation of the problem,
and the training setup. We will also present experimental
results demonstrating the effectiveness of the approach in
both global and limited-area forecasting tasks.

2.1. Graph-based Ensemble Forecasting Model
(Graph-EFM)

In their work, (Oskarsson et al., 2024) propose a probabilis-
tic weather forecasting model combining a flexible latent-
variable formulation with a graph-based forecasting frame-
work, called Graph-EFM. They built a probabilistic model
from ground up still working on a auto-regressive setup
where they decomposed the distribution over the time steps.
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Figure 1. Overview of our Graph-EFM model, with example data
and graphs for global forecasting (Oskarsson et al., 2024).

This approach allows for the generation of ensemble fore-
casts, where each ensemble member represents a possible
trajectory of weather states, capturing the inherent uncer-
tainty of what they called in the paper ”chaotic weather
systems”.

The key innovation of Graph-EFM lies in its hierarchical
graph neural network architecture, which enables efficient
and spatially coherent sampling of ensemble members. By
leveraging a hierarchical structure, the model propagates
information across multiple spatial scales, capturing both
local and global weather dynamics. This design not only
improves the accuracy of forecasts but also ensures compu-
tational efficiency, requiring only a single forward pass per
time step to generate large ensembles.

The paper introduce a latent random variable Zt at
each time step, with the idea that it should cap-
ture any uncertainty that is in this single time step
prediction. Then, the deep latent variable model
is formulated as follows: p(X1:T |X−1:0, F 1:T ) =∏T

t=1

∫
p(Xt|Zt, Xt−2:t−1, F t)p(Zt|Xt−2:t−1, F t)dZt,

where the part p(Zt|Xt−2:t−1, F t) if for the latent map
and p(Xt|Zt, Xt−2:t−1, F t), for the predictor.

The latent map describes uncertainty in single-step predic-
tion by defining distribution of latent random variable Zt

while the predictor, chosen as a deterministic mapping with
skip connection X̂t = Xt−1 + g(Zt, Xt−2:t−1, F t), pre-
dicts next weather state Xt given sample of Zt.

With this formulation and letting the latent map
be an isotropic Gaussian, p(Zt|Xt−2:t−1, F t) =∏

a∈VL
N

(
Zt
a|µZt(Xt−2:t−1, F t)a, I

)
where The mean

function µZ consists of a sequence of GNNs, Graph-EFM
has an architecture similar to a (conditional) Variational
AutoEncoder (VAE), as illustrated in Figure 1.

To efficiently capture multi-scale dependencies, they con-
struct the hierarchical graph as follows. The hierarchy
consists of multiple graph levels G1, G2, . . . , GL, where
each level Gl = (Vl, El) contains a decreasing num-
ber of vertices as l increases. Level 1 is the only one
that is connected to the input grid, and information prop-
agates upward through a sequence of directed graphs

G1,2, G2,3, . . . , GL−1,L, enabling higher-level abstractions.
A reverse sequence GL,L−1, . . . , G2,1 allows to pass infor-
mation and filter it back up to higher scales.

2.2. Training

We have seen in the last section that the model architecture
is close to a VAE. Therefore, to train the model, they first
define a variational distribution q(Zt|Xt−2:t−1, Xt, F t)
as a Graph Neural Network (GNN) that maps to an
isotropic Gaussian and approximates the true posterior
p(Zt|Xt−2:t−1, Xt, F t) over Zt.

Then, they enter in pre-training phase where they minimize
the Evidence Lower Bound (ELBO) for a single time step
with the focus is on learning latent space representations
while maintaining spatial coherence:

LVar(X
t−2:t−1, Xt, F t) =

λKLDKL

(
q(Zt|Xt−2:t−1, Xt, F t)

∥∥∥p(Zt|Xt−2:t−1, F t)
)
−

Eq(Zt|Xt−2:t−1,Xt,F t)[
∑

a∈VG

∑dx

j=1 logN
(
Xt

a,j

∣∣∣
g(Zt, Xt−2:t−1, F t)a,j , σ

2
a,j

)
]. The weighted param-

eter λKL and the standard deviation σα,j are generally
chosen manually.

After the pre-training phase is done, they fine-tune the model
by multi-step rollouts including an additional loss term
based on the Continuous Ranked Probability Score (CRPS).
This helps mitigate blurriness in deterministic components
while maintaining ensemble diversity:

L = LVar + λCRPSLCRPS, where λCRPS is
a weighting hyperparameter and LCRPS =∑T

t=1

∑
α∈VG

∑dz

j=1 wα
1
2 (
∣∣∣X̂t

α,j −Xt
α,j

∣∣∣+∣∣∣X̃t
α,j −Xt

α,j

∣∣∣ −
∣∣∣X̂t

α,j − X̃t
α,j

∣∣∣). X̂t and X̃t com-
ing from two independent ensemble members sampled from
the model.

3. GraphCast
In this section, we decided to do a brief deep dive into the
paper GraphCast: Learning Skillful Medium-Range Global
Weather Forecasting (Lam et al., 2023), which introduces
the weather forecasting model GraphCast. In (Oskarsson
et al., 2024), GraphCast was reimplemented, trained on
the considered datasets (ERA5 and MEPS), and used as a
state-of-the-art baseline for comparison with Graph-EFM.
Based on GNNs, GraphCast predicts the Earth’s surface
and atmospheric (3D) weather, 10 days head, at 0.25 degree
latitude/longitude resolution.
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Figure 2. Model schematic (Lam et al., 2023)

3.1. Overview

GraphCast has three main components: an encoder, a pro-
cessor, and a decoder.

The encoder maps local regions of the input (green boxes) to
nodes in the multi-mesh graph representation (green upward
arrows terminating in green-blue nodes). The processor
then updates each multi-mesh node using learned message-
passing (thick blue arrows pointing to nodes). Finally, the
decoder maps the processed multi-mesh features (purple
nodes) back onto the grid representation (red downward
arrows terminating in red boxes). See Figure 2.

The learning process of GraphCast is driven by an autore-
gressive loss to penalize long-term. It was trained to mini-
mize the mean square error (MSE) between the target output
X and predicted output X̂ . See the appendix A.1 for the
loss objective function.

3.2. Comparison of GraphCast and Graph-EFM

GraphCast and Graph-EFM are two advanced machine
learning weather forecasting techniques that differ in ar-
chitecture, prediction methodology, and operational use.
GraphCast generates one high-resolution forecast using a
graph neural networks architecture with state-of-the-art per-
formance on 10-day forecasts. Graph-EFM, on the other
hand, yields ensemble forecasts, which create numerous
potential weather sequences to calculate uncertainty—a pri-
mary necessity for calculating dangers like excessive heat
or cyclones.

The authors to evaluated the models used two datasets: the
ERA5 (global reanalysis (Hersbach et al., 2020), 1.5◦ reso-
lution, 10-day forecasts) and the MEPS (Müller et al., 2017)

Dataset ERA5 MEPS [6]
Type Reanalysis Forecasts
Region Global Nordics
Years 61 2
Variables 83 17
Resolution 1.5°, 6 h 10 km, 3 h
Forecast Length 10 days 57 h

Table 1. Details on the datasets

(Nordic forecasts, 10 km resolution, 57-hour forecasts). See
the Table 1 for more details. They compared their proposed
Graph-EFM model against several baselines models such
as a multi-scale verison of EFM instead of hierachical, the
Graph-FM (it is a deterministic hierarchical model), and a
more important reimplementation of GraphCast, which we
will refer to as GraphCast*. Then, the model performance
is evaluated using the metrics RMSE computed on the en-
semble mean, the CRPS wich measure how well the model
distribution correspond to the data, and finally the SpSkR
metric for measuring how well the uncertainty in ensemble
forecasts matches the actual forecast errors, with an optimal
value of 1 indicating perfect calibration. We present the
results of the evaluation in the next section.

4. Results
4.1. Author’s experiments

The authors of (Oskarsson et al., 2024) first conducted ex-
periment on limited area modelling. They do this to develop
a fast surrogate model for the MEPS Limited Area Model,
which provides high-resolution weather forecasts for the
Nordic region. The Limited area models require boundary
conditions as additional inputs. The goal was to test whether
Graph-EFM could efficiently handle regional forecasting
while maintaining accuracy and capturing uncertainty. To
simulate weather dynamics accurately we need boundary
conditions, so the authors adapted an approach for their ma-
chine learning-based LAM by introducing additional grid
nodes along the boundary to incorporate boundary forcing
Bt. These boundary conditions were fed into the model
alongside the initial weather states Xt, and the grid nodes
(both boundary and internal) were treated identically by the
GNN layers.

The Table 2 highlights that Graph-EFM consistently
achieves the best CRPS scores and the highest SpSkR values
across both lead times (24h and 57h), this indicates superior
probabilistic forecasting and better calibration of uncertainty
compared to the other models. While GraphCast* has the
lowest RMSE for all the lead time and variable, Graph-EFM
strikes a balance between accuracy and uncertainty quantifi-
cation, making it the most effective model for probabilistic
limited-area forecasting.
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Table 2. Selection of results for LAM forecasting, including
geopotential at 500 hPa (z500) and integrated column of wa-
ter vapor (wvint). The best metric values are marked with bold
(Oskarsson et al., 2024).

Lead time 24h

Variable Model RMSE CRPS SpSkR

z500 GraphCast* 153 108 -
Graph-EFM 172 91 0.84

wvint GraphCast* 1.51 1.01 -
Graph-EFM 1.61 0.79 0.57

Lead time 57h

Variable Model RMSE CRPS SpSkR

z500 GraphCast* 201 138 -
Graph-EFM 219 115 0.75

wvint GraphCast* 2.82 1.32 -
Graph-EFM 2.08 1.00 0.53

Next, for the global analysis Graph-EFM performed well,
producing spatially coherent ensemble members and demon-
strating improved calibration compared to baseline models
like GraphCast* and Graph-FM. However, the ensemble
forecasts were slightly under-dispersed (SpSkR < 1).

Table 3. Selection of results for global forecasting, including
geopotential at 500 hPa (z500) and 2 m temperature (2t). (Os-
karsson et al., 2024).

Lead time 5 days

Variable Model RMSE CRPS SpSkR

z500 GraphCast* 387 236 -
Graph-EFM 399 169 1.18

2t GraphCast* 1.65 1.00 -
Graph-EFM 1.64 0.71 0.98

Lead time 10 days

Variable Model RMSE CRPS SpSkR

z500 GraphCast* 808 498 -
Graph-EFM 695 299 1.15

2t GraphCast* 2.82 1.69 -
Graph-EFM 2.32 1.00 0.99

Also, an important remark is that, as the lead time increases,
Graph-EFM outperforms other models, achieving lower
errors and better calibration (SpSkR ≈ 1). This demon-
strate its ability to capture uncertainty in long-term forecasts
(cf. Table 3) witch is important for weather prediction.
Graph-EFM outperforms GraphCast* in most metrics for
both z500 and 2t at 5-day and 10-day lead times. While
GraphCast* has slightly lower RMSE for z500 at 5 days,
Graph-EFM has superior CRPS and spatial skill (SpSkR)
in all cases and a notably lower RMSE at 10 days. For
2t, Graph-EFM consistently produces more precise and

trustworthy predictions with lower RMSE and CRPS and is
therefore the overall better model.

4.2. Our experiments

In this section, we present our experiments. Our objec-
tive was to model the fundamental principles used in the
paper’s methodology rather than simply reproducing the
same results, which would require significant computational
resources and be less interesting from an educational per-
spective.

Inspired by the paper method, we built two forecasting
models for the North-West region of France using data from
the ERA5 database. The observed variables are the 2-meter
temperature and the two wind components.

We propose two graph encoder-decoder architectures:

• The first is a deterministic model.

• The second, probabilistic, introduces a latent variable
Z to improve forecasting at time t+ 1. (cf. figure [4]
in Appendix)

Below one of the results we obtained with the deterministic
encoder-decoder based GCN.

Figure 3. Forecasting with Graph One-Time-Step Convolutional
Network Encoder-Decoder Structure (U-Wind Component)

As observed, the predictions are quite accurate. Predictions
for other variables and architectures can be found in the
appendix. The complete implementation code is available
at the following at https://github.com/arazig/ML-with-
Graphs-Project-Weather-Forecasting-with-GNNs.

5. Conclusion
In conclusion, the paper presents Graph-EFM model for
ensemble weather forecasting using graph-based latent vari-
able models. It efficiently makes accurate ensemble fore-
casts, emphasizing the value of modeling distributions of
weather states directly over perturbing models.

However, the training process presents challenges, particu-
larly in selecting a training schedule and balancing hyperpa-
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rameters like λKL and λCRPS, as excessive CRPS fine-tuning
can introduce artifacts.

References
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi,
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A. Appendix
A.1. GraphCast Loss Function

LMSE = 1
|Dbatch|

∑
d0∈Dbatch

1
Ttrain

∑
τ∈1:Ttrain

1
|G0.25◦ |

∑
i∈G0.25◦

∑
j∈J sjwjai

(
xd0+τ
i,j − x̂d0+τ

i,j

)2

where

• τ ∈ 1 : Ttrain represents the lead times associated with the Ttrain autoregressive steps.

• d0 ∈ Dbatch denotes the forecast initialization date-times within a batch of forecasts used in training.

• j ∈ J is the index for variables, which, in the case of atmospheric data, corresponds to pressure levels.

• i ∈ G0.25◦ refers to the grid points defined by latitude and longitude coordinates.

• xd0+τ
i,j and x̂d0+τ

i,j denote the actual and predicted values, respectively, for a given variable, location, and lead time.

• sj represents the inverse variance of time differences for each variable.

• wj is the weighting factor assigned to each variable in the loss function.

• ai corresponds to the area of a latitude-longitude grid cell, which varies with latitude and is normalized such that its
mean value across the grid is one.

B. Experiments modelisation
The following figures show the probabilistic model used in our experiments for predictions of the U-wind component,
V-wind component, and temperature at 2 meters.

Figure 4. Experimental probabilistic model.
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C. Prediction Results
C.1. Graph Convolutional Network (GCN) - Encoder Architecture

The following figures show the one-step-ahead predictions using the Graph Convolutional Network (GCN) with an encoder
architecture. Predictions are provided for the U-wind component, V-wind component, and temperature at 2 meters.

Figure 5. One-step-ahead prediction of the U-wind component using the Graph Convolutional Network.

Figure 6. One-step-ahead prediction of the V-wind component using the Graph Convolutional Network.

Figure 7. One-step-ahead prediction of the temperature at 2 meters using the Graph Convolutional Network.

C.2. Variational Graph Autoencoder (VGAE)

The following figures show the predictions using the Variational Graph Autoencoder (VGAE). Each image consists of three
subplots: (1) the true values, (2) the predicted values, and (3) the difference between them.
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Figure 8. Variational Graph Autoencoder predictions for the U-wind component. The image consists of three subplots: true values,
predicted values, and their difference.

Figure 9. Variational Graph Autoencoder predictions for the V-wind component. The image consists of three subplots: true values,
predicted values, and their difference.

Figure 10. Variational Graph Autoencoder predictions for the temperature at 2 meters. The image consists of three subplots: true values,
predicted values, and their difference.
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