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Motivation: The Generative Learning Trilemma

▶ Key Requirements for Generative Models:
▶ High-quality samples, good mode coverage and fast sampling.

▶ The Trilemma: Mainstream generative models struggle to achieve all three
simultaneously.
▶ GANs: Fast sampling, high quality, but poor mode coverage.
▶ Diffusion Models: High quality, good mode coverage, but slow sampling.
▶ VAEs: Good mode coverage, but lower sample quality.

▶ Our Focus: Tackling the trilemma with DDGAN (Denoising Diffusion GAN).
▶ Combines the strengths of diffusion models and GANs.
▶ Achieves fast sampling, high quality, and good mode coverage.



Key Concepts and Formulas of Diffusion models
The Forward Process
▶ Gradually add noise to clean images:

xt =
√

1− βt xt−1 +
√

βt ϵ, ϵ ∼ N (0, I )

▶ Transition distribution:

q(xt |xt−1) = N
(
xt |

√
1− βt xt−1, βt I

)
▶ As t increases, xT becomes nearly indistinguishable from pure noise.

Forward Process: Progressive noise addition (ϵ)



Denoising in DDGANs
Key Idea:
▶ Reduce the number of denoising steps T by increasing the values of βt .

Problem:
▶ When βt is large, p(xt−1|xt) is no longer Gaussian.
▶ The Gaussian assumption does not hold anymore.

Figure: Effect of increasing βt on denoising



Conditional GANs

Motivation: Given xt , we wish to draw a valid xt−1 from the distribution pθ(xt−1 | xt).
A Simple and Direct Approach:

▶ Step 1: Gather many Triplets {(x0, xt−1, xt)} by applying the forward diffusion
process to a large set of images.

▶ Step 2: Train a conditional GAN that learns to map xt (and latent noise) to
plausible xt−1 samples.

Figure: Condionnal GAN’s principle



DDGANs: Bridging DDPM and GANs

Figure: The training process of denoising diffusion GAN



DDGAN Training Objective

▶ Discriminator Training:

minϕ
∑

t≥1 Eq(xt)

[
Eq(xt−1|xt)(− logDϕ(xt−1, xt , t)) + Epθ(xt−1|xt)(− log(1− Dϕ(xt−1, xt , t)))

]
.

▶ The discriminator’s parameter ϕ is updated to associate value near to 1 for real
samples and values near to 0 for fake ones.

▶ Generator Training (with fixed ϕ):

max
θ

∑
t≥1

Eq(xt)

[
Epθ(xt−1|xt)

[
logDϕ(xt−1, xt , t)

]]
.

▶ The generator’s parameter θ is updated to produce denoised samples xt−1 that the
discriminator classifies as real.



Model Comparison on CIFAR-10
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(a) Sample quality vs. sample time trade-off
(b) Performance of DDGAN vs. diffusion and
GAN models

Figure: Paper’s experiments on CIFAR-10 dataset



Experiment on MNIST dataset

(a) Generated samples with DDPM (b) Generated samples with DDG

Figure: Comparison between generated samples DDPM vs. Denoising Diffusion GANs



Conclusion

▶ Tackling the generative learning trilemma with DDGAN.

▶ DDGAN uses a complex multimodal distribution to take large denoising steps.

▶ This model is competitive in the three key points of the trilemma with
state-of-the art models.

▶ Computationally costly model : use of multiple GPUs by the NVIDIA team.



Appendix 1: DDPM Denoising Process

▶ Denoising Process: The true conditional is given by

q(xt−1 | xt , x0) = N
(
xt−1; µ̃t(xt , x0), β̃t I

)
where

µ̃t(xt , x0) =

√
ᾱt−1βt
1− ᾱt

x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt .

Since x0 is unknown during sampling, we estimate it with a neural network
fθ(xt , t) (i.e., x̂0 = fθ(xt , t)) and define:

pθ(xt−1 | xt) = N
(
xt−1; µ̃t

(
xt , fθ(xt , t)

)
, σ2

t I
)
.



Appendix 2: DDPM and DDGANs Sampling Formulas

▶ In DDPM, the reverse process is modeled by a Gaussian:

p0(xt−1 | xt) = q
(
xt−1 | xt , x0 = fθ(xt , t)

)
.

fθ is modeled by a neural network and q is a normal distribution.

▶ DDGANs use a conditional GAN to model the denoising distribution.

▶ The reverse process is defined as:

pθ(xt−1 | xt) =
∫

p(z) q
(
xt−1 | xt , x0 = Gθ(xt , z , t)

)
dz

▶ Here, the generator Gθ(xt , z , t) predicts an estimate of x0 based on the current
noisy image xt , the latent variable z (with z ∼ N (0, I )), and the time step t.



Appendix: Rewriting the Expectation

▶ By applying the identity

q(xt , xt−1) =

∫
dx0 q(x0) q

(
xt−1 | x0

)
q
(
xt | xt−1

)
,

we can rewrite the expectation as follows:

Eq(xt ) q(xt−1|xt )
[
− logDϕ(xt−1, xt , t)

]
= Eq(x0) q(xt−1|x0) q(xt |xt−1)

[
− logDϕ(xt−1, xt , t)

]
.



Appendix 3: Key Concepts and Formulas of Diffusion models

The Denoising Steps: From Noisy xT to Clean x0
▶ Gaussian assumption for q(xt−1|xt) holds only if:

▶ Step size βt is infinitesimal.
▶ Data marginal q(xt) is Gaussian.

Reducing denoising steps T breaks the Gaussian assumption.

The Key Idea

Model the denoising process with a multimodal distribution using conditional
GANs.

Conditional GANs approximate the true denoising distribution q(xt−1|xt).
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