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Project summary

This applied project is based on the foundational academic article ”Deep Learn-
ing: A Bayesian Perspective”Nicholas Polson [2017]. The objective is to explore
this statistical application, by connecting theoretical insights from the paper with
practical data analysis, the project aims to evaluate the applicability and effective-
ness of Bayesian approaches in real-world scenarios.
The project is structured around three core elements. First, we summarize the key
objectives and contributions of Nicholas Polson [2017], focusing on the way of
integrating Bayesian methods with deep learning models. Then selected datasets
will serve as a basis for applying Bayesian methods. We will conduct a detailed
analysis by implementing techniques and models aligned with the concepts ex-
plored in the paper and class materials. All our experiments are available in this
Github repository1, where you can find the code, some theoretical explanations
and data visualization.

1 Introduction

On one hand, we want to highlight that this project is a Bayesian Statistics project. Bayesian statis-
tics provide a framework for learning from data through the principle of probability. One of the
foundations of this statistical field is Bayes’ rule, which we will describe later. Essentially, it is
a structured way of updating beliefs about unknown parameters using observed data, integrating
both prior knowledge and new information. This approach is interesting because it aligns with the
principles of rational decision-making.

On the other hand, Deep learning, has revolutionized machine learning by enabling models to learn
complex, non-linear relationships from data. Multi-layers Perceptrons are composed of layers of
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interconnected neurons, each applying weights and learned activation functions to extract features
and make predictions. While traditional deep learning often focuses on deterministic parameter
estimates, a Bayesian perspective introduces probabilistic modeling, where uncertainty in parame-
ters and predictions is explicitly quantified. By incorporating a priori weights and using Bayesian
inference. The bayesian deep learning framework can improve robustness, provide uncertainty es-
timates for predictions and help prevent over-fitting, which is a fundamental concept in an applied
ML project.

In this project, we decided to tackle a medical and energy questions with deep learning from a
Bayesian perspective approach using two datasets: the National Institute of Diabetes and Digestive
and Kidney Diseases’ diabetes dataset, and the regional transmission organization PJM’s hourly
energy consumption data. First, the idea is to apply such a framework we want to show applications
in different fields where uncertainty quantification is important. In medical applications for example,
Bayesian methods enable to optimize a treatment strategies by explicitly accounting for uncertainty.
This ensures that decisions are both driven by the data and tailored to individual beliefs, even when
information is incomplete.

2 Presentation of the dataset

2.1 Description

The first dataset, from the National Institute of Diabetes and Digestive and Kidney Diseases,
contains health-related information aimed at predicting the onset of diabetes. It includes 768 en-
tries and 9 characteristics, collected from patients who have undergone medical examinations. The
dataset includes glucose level, blood pressure or teh age for instance.

For the second one, PJM hourly energy consumption data provides detailed information on
electricity consumption in the regions managed by the PJM (Pennsylvania-New Jersey-Maryland)
regional transmission organization. This dataset includes hourly energy consumption data, providing
an overview of energy demand in different sectors.

2.2 Objectives

In this project, we have chosen to explore two distinct domains. The first objective is to use the
diabetes dataset to evaluate uncertainty about developing diabetes, by exploiting the various medical
variables available. The second objective is to analyze PJM’s hourly energy consumption data to
predict fluctuations in energy demand. We will use Bayesian framework to capture uncertainty and
improve model robustness. With these two datasets, we aim to demonstrate the effectiveness of
Bayesian models in deep learning for prediction and uncertainty.

3 Modelling

Modeling is the focus of our report and requires the explanation of several concepts such as deep
learning, Bayesian inference, Monte Carlo estimation methods, and Dropout approximation. These
are concepts that we will present to justify our model (Monte Carlo Dropout) used on real data. We
call Monte Carlo Dropout an MLP with Dropout layers and several forward passes for prediction to
model uncertainty.

3.1 Theoretical basis of MLP

The first concept we will explore is neural networks. There are many different neural network
architectures, varying in complexity and suitability for specific tasks. Here, we focus on a simple
architecture developed in Nicholas Polson [2017]: the multi-layer perceptron (MLP).

The basic idea behind the MLP is that it consists of several layers of neurons. Each neuron corre-
sponds to a linear combination of the neurons in the previous layer. A non-linear function, known as
the activation function, is then applied to this linear combination. This structure allows the model to
capture complex, non-linear relationships between inputs and outputs, which is essential for solving
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Figure 1: Illustration of the strcuture of a Neural Network. Source: Miguel Perez-Enciso.

more intricate problems that linear models cannot handle. The model produces a prediction, denoted
as ŶW,b(Xi), which is essentially a composition of the different layers in the network.

However, while MLPs can learn powerful models from data, they often suffer from a critical prob-
lem: the uncertainty of model predictions. In traditional MLPs, the network learns point estimates
for weights W (l) for all layers l, which may not reflect the underlying uncertainty of the model or
data. This is particularly problematic in applications where understanding the uncertainty of the pre-
diction is important, such as medical diagnostics. Since the main subject of this academic project is
not deep learning we do not develop much about the mathematical formalization of a neural network
structure, forward and backward, but some details are given in the appendix.

3.2 Bayesian Inferance

So, this is where Bayesian inference comes into play. Bayesian methods allow us to treat the weights
of a neural network as random variables rather than fixed parameters. Instead of learning a single
set of weights, the network learns a distribution over weights, which reflects the uncertainty about
their true values. By incorporating Bayesian inference, we can not only make predictions but also
quantify the uncertainty associated with those predictions.

But first, let’s introduce some basic concepts.

3.2.1 Bayes for neural networks

For us the parameters to estimate are the weights of the network. Bayes rule incorporate prior
knowledge about an unknown θ before the observation of the data X . It is given by:

p(θ | X) =
p(X | θ)p(θ)∫
p(X | θ)p(θ)dθ

This is interpretable in the way that with a given prior, the posterior has all information about the
parameter θ based on the data X . So, for the task of predicting y′ with x′, the parameter is still θ
and the data is D = (X,Y ) and so we have :

p(θ | X,Y ) =
p(Y | θ,X)p(θ)∫
p(x | θ, Y )p(θ) dθ︸ ︷︷ ︸

not tractable

p(y′ | x′, X, Y ) =

∫
p(y′ | x′, θ)p(θ | X,Y ) dθ
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With the total probability formula we see that Bayes predictor averages over all of the models param-
eterized by θ. But a it is notified, some parts are not tractable. We can use MCMC usualy but because
of the numbers of parameters this approach is difficult. Instead, Nicholas Polson [2017] explain the
following approach. insated of finding the posterior distribution of the parameters p(θ | X,Y ) we
find an approximation of this distribution denoted q. For that we minimize the Kullback-Leibler
divergence between q(θ|ϕ) and p(θ|D)

3.2.2 Variational Inference

The goal in variational inference is to minimize the KL divergence. However, directly minimiz-
ing the KL divergence involves the intractable term log p(θ|D). To address this, the paper used
variational approaches instead of MCMC methods, which approximate p(θ|D) with a simpler dis-
tribution q(θ|ϕ), where ϕ are the parameters of the approximation. To address this, we use the
following useful identity (details of the proof in appendix) :

log p(D) = ELBO(ϕ) + KL(q ∥ p),

where:

• ELBO(ϕ) is the Evidence Lower Bound.
• KL(q ∥ p) represents the KL divergence.

Since the sum does not depend on ϕ, minimizing KL(q ∥ p) is equivalent to maximizing the ELBO:

ELBO(ϕ) =

∫
q(θ | D,ϕ) log

p(Y | X, θ)p(θ)

q(θ | D,ϕ)
dθ.

Thus, maximizing the ELBO can be solved using stochastic gradient descent with respect to ϕ. This
approach allows us to approximate the posterior while avoiding the intractable log p(θ | D).

3.2.3 Reparametrization for Monte Carlo method

Maximizing the ELBO is usually done with Gradient Descent. However computing these gradients
remains a challenge, beaucause the gradient of the first term ∇ϕ

∫
q(θ|D,ϕ) log p(Y |X, θ)dθ =

∇ϕEq log p(Y |X, θ) is not an expectation anymore and thus cannot be calculated using Monte Carlo
methods. To overcome this, two primary techniques are used.

First, the log-derivative trick, uses the following identity :

∇ϕEq[log p(Y |X, θ)] = Eq[∇ϕ log q(θ|ϕ) · log p(Y |X, θ)].

This method is particularly useful for simple distributions q(θ|ϕ), where derivatives and samples are
easy to obtain.

Second, the reparametrization trick redefines the parameters θ as a deterministic transformation of
an independent random variable ϵ, enabling Monte Carlo-based gradient estimation. If we represent:

θ = g(ϵ, ϕ) where ϵ ∼ r(ϵ),

then the gradient can be re-expressed as:

∇ϕEq[log p(Y | X, θ)] = Eϵ[∇ϕg(ϵ, ϕ) · ∇θ log p(Y | X, θ)].

This formulation ensures that gradients can be estimated using Monte Carlo methods by sampling ϵ
from its known distribution r(ϵ).

MCMC Framework:

In Bayesian inference, Markov Chain Monte Carlo (MCMC) is a common method for simulating
samples from a target posterior distribution. The principle involves generating a sequence of random
variables {θ(1), θ(2), . . . , θ(R)} such that the distribution of θ(r) approximates the posterior p(θ | D)
as r → ∞.

To incorporate the reparametrization trick into the MCMC framework, the transformation θ =
g(ϵ, ϕ) is used in each step of the Markov chain. The sampling procedure becomes:

ϵ(r) ∼ r(ϵ), θ(r) = g(ϵ(r), ϕ).

4



Algorithm 1 MCMC Method with Reparametrization

1: Input: Initial state θ(0), reparametrization function g(ϵ, ϕ), independent distribution r(ϵ), num-
ber of iterations R.

2: Step 1: Initialization
3: Set the starting point θ(0).
4: Step 2: Iterative Transition
5: for r = 1 to R do
6: Sample ϵ(r) ∼ r(ϵ).
7: Compute θ(r) = g(ϵ(r), ϕ).
8: end for
9: Output: Sequence {θ(1), θ(2), . . . , θ(R)}.

10: Convergence:
11: Under appropriate conditions on g(·) and r(·), the distribution of θ(r) | θ(0) converges to a

stationary distribution as r → ∞.

The resulting sequence {θ(1), θ(2), . . . , θ(R)} converges to a stationary distribution that incorporates
the effects of the reparametrization.

Thus, the gradient estimation becomes feasible, as the dependence on ϕ is explicitly captured
through the deterministic transformation g(ϵ, ϕ).

3.3 Dropout approximation

Dropout is introduced as a regularization technique, it can be interpreted as a Bayesian approxima-
tion. Specifically, during training, dropout randomly masks (sets to zero) some neurons, simulating
a stochastic model ensemble. During inference, by keeping dropout active and performing multi-
ple forward passes with different masks, we passe the same input many times (N samples) in the
network and we collect N different predictions, these predcitions are used to approximate the mean
E[y∗|x∗] ≈ 1

N

∑N
i=1 ŷi and the variance Var[y∗|x∗] ≈ 1

N

∑N
i=1(ŷi − E[y∗|x∗])2. The predic-

tions generated by the deep learning models with dropout are nothing but samples from predictive
posterior distribution. This interpretation was formalized in the work ”Dropout as a Bayesian Ap-
proximation: Representing Model Uncertainty in Deep Learning”, Yarin Gal [2016]. They showed
that dropout can be seen as a bayesian approximation. more specifically, applicating Dropout during
the training and test is equivalent to appoximate a baeysian model with a distibution of weights.

Therefore, in what follows, we use the Monte Carlo Dropout model as an approximation of a
Bayesian Neural Network with variational inference.

4 Results

In Nicholas Polson [2017], the experiment involved a simple MLP applied to a ranking task without
any Bayesian deep learning application.

In this section, we apply our model: an MLP with dropout layers to interpret uncertainty using a
Monte Carlo technique through multiple forward passes of the model. To achieve this, we activate
the dropout layers during both training and evaluation.

First, we use this model for a binary classification task on the diabetes dataset, as well as on a simple
toy dataset we created to facilitate better interpretability.

Next, we apply our model to a time-series dataset: the hourly estimated power consumption provided
by the PJM organization in the eastern United States, spanning from 2002 to 2018. We plot the
confidence intervals and the Monte Carlo mean of the forward pass predictions and compare them
with ground-truth values.

4.1 Binary Classification

The binary classification task involved predicting an outcome variable: whether a person has di-
abetes or not, using the two most important features of the dataset (selected with XGBoost and
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correlations): Glucose level and Body Mass Index (BMI). These features were chosen to enable the
plotting of decision boundaries in a 2D space.

Model Parameters. The model we trained consisted of two hidden layers (with 64 and 32 hidden
units each) with ReLU activation functions and dropout applied after each layer. After fine-tuning,
we selected a dropout rate of 0.2. The optimizer used for this task was Adam with a learning rate
of 0.01. We trained the model for 2000 epochs. Overfitting was not a concern in this case, as the
inference was conducted on the training data for experimental purposes.

We first plotted the decision boundary and entropy from a single forward pass on the training set
without dropout. The results are shown in the figure2a. For our binary classification task, entropy
was calculated based on the predicted probabilities for each class. When the model is uncertain (i.e.,
when the probabilities are close to 0.5), entropy is high. Conversely, when the model is confident
(i.e., when the probabilities are close to 0 or 1), entropy is low. High entropy indicates greater
uncertainty, while low entropy reflects higher confidence in the predictions. However, this single
forward pass is insufficient to fully interpret uncertainty, as the model in this case is deterministic.

To address this, we performed multiple forward passes using Monte Carlo (MC) Dropout to better
interpret uncertainty at each pass. However, due to the noise introduced by dropout and the com-
plexity of our dataset (as detailed in the notebook), we were unable to achieve satisfactory results in
terms of decision boundaries. Therefore, we conducted the same experiment on a toy dataset consist-
ing of two linearly separable classes in a 2D space, which allowed us to better interpret uncertainty
through decision boundaries and entropy.

In the figure2b, we observe the results of one of the forward passes. Compared to the other plot,
there is more noise due to the dropout. However, this allows us to interpret uncertainty. Zones where
the decision boundary is narrow (with respect to the 0-ordinate axis) in most iterations correspond to
areas with the least uncertainty, whereas zones where the boundary is wider indicate regions where
the model is most uncertain.

As shown in the entropy plot, dropout introduces additional noise, which can cause yellow points
(representing areas of highest uncertainty) to appear in different parts of the grid as anomalies in
the decision boundary, scattered across the grid. In these zones, these anomalies cannot be fully
attributed to uncertainty, but rather to the noise introduced by dropout.

(a) Decision boundary and entropy a simple predic-
tion with the MLP (no Dropout for evaluation) for
diabetes dataset

(b) Decision Boundary and entropy for one of the
forward passes of MC Dropout (dropout activated
for evaluation) for toy dataset

Figure 2: Decision boundaries and entropies plot for both datasets: diabetes and toy dataset

4.2 Time-series Regression

We also applied our model to a regression task on the hourly power consumption dataset, PJME.

Model Parameters. We used an MC Dropout MLP with 4 hidden layers (containing 1000, 2000,
2000, and 1000 units, respectively) and SELU activation functions. Dropout was applied after each
layer with a dropout rate of 0.4. The model was trained for 200 epochs with Early Stopping, which
halted training after 16 epochs. The optimizer used was the NAdam optimizer with a default learning
rate of 0.001.

After training, we performed several forward passes (with dropout enabled) on the test set, which
included observations from 2015 to 2018. We plotted in figure3 the MC mean predictions along with
the confidence intervals, which provide an interpretation of the model’s uncertainty. It is important
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to note that an MLP is not ideally suited for time series data due to the inherent time dependencies
and seasonal patterns in such datasets.

Figure 3: Mean predictions and confidence intervals compared with ground-truth values in one week
of the test set.

5 Conclusion

In Nicholas Polson [2017], authors explores a method using weight distributions, showing that ap-
plying Dropout during both training and testing is equivalent to approximating a Bayesian NN with
variational inference Yarin Gal [2016]. Experiments were conducted on the PJME hourly energy
consumption, a time series, where we were able to interpret uncertainty through confidence inter-
vals applied to our predictions. The results obtained, however, were not particularly strong. This can
be attributed to the fact that (MLPs), as an architecture, are not designed to handle time series data
effectively. Thus, a suggested improvement would be to experiment bayesian techniques (dropout
or variational inference) with Recurrent Neural Networks (RNNs) instead of MLPs, since they are
more suited to capturing temporal dependencies, which could lead to better modeling of uncertainty
and more accurate predictions (smaller confidence intervals).
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GitHub

Instructions to run the code are available in the README file of the following github:

GitHub Repository link : https : //github.com/ahmedkakiAK/Bayesian stats project.git

References
Vadim Sokolov Nicholas Polson. Deep learning: A bayesian perspective. 12:1275–1304, 2017.

Zoubin Ghahramani Yarin Gal. Dropout as a bayesian approximation: Representing model uncer-
tainty in deep learning. 2016.

8

https://github.com/ahmedkakiAK/Bayesian_stats_project.git


Appendix

MLP

Forward Propagation

The goal of forward propagation is to compute the prediction ŷ and the loss L using the current
model parameters (w[l], b[l]). The neural network receives an input x. For layer l, the linear output
is:

z[l] = w[l]a[l−1] + b[l]

where a[0] = x is the input to the first layer. An activation function f(·) is applied to produce:

a[l] = f(z[l])

And then, the last layer produces the prediction ŷ.

Backward Propagation

The purpose of backward propagation is to compute the gradients of the loss with respect to the
model parameters (w[l], b[l]) to optimize them. We start with the derivative of the loss with respect
to the predicted output:

∂L
∂ŷ

and then, propagate this derivative backward through the network, using the cahin rule, to compute:

∂L
∂z[l]

,
∂L
∂w[l]

,
∂L
∂b[l]

Update of the parameters simply use the gradient descent rule.

MSE loss

If we consider a given training dataset

D = {(Y (i), X(i))}Ti=1

of input-output pairs and a loss function L(Y, Ŷ ), we compute:

Ŵ = (Ŵ0, . . . , ŴL) and b̂ = (b̂0, . . . , b̂L)

by solving:

argmin
W,b

1

T

T∑
i=1

L
(
Yi, ŶW,b(Xi)

)
.

For the L2-norm in a traditional least squares setting:

L(Yi, Ŷ (Xi)) = ∥Yi − Ŷ (Xi)∥22,
the target function becomes the mean-squared error (MSE).

Derivation of log p(D)

The goal is to express log p(D) in terms of the Evidence Lower Bound and the KL divergence. We start by
introducing a variational distribution q(θ | D,ϕ) to approximate the true posterior p(θ | D).

First, the marginal likelihood p(D) can be written as:

log p(D) = log

∫
p(θ,D) dθ,

where p(θ,D) = p(θ)p(D | θ). By introducing the variational distribution q(θ | D,ϕ), we rewrite:

log p(D) = log

∫
q(θ | D,ϕ)

p(θ,D)

q(θ | D,ϕ)
dθ.
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Using Jensen’s inequality (logE[X] ≥ E[logX]), we lower-bound log p(D):

log p(D) ≥
∫

q(θ | D,ϕ) log
p(θ,D)

q(θ | D,ϕ)
dθ.

The term on the right-hand side is the Evidence Lower Bound :

ELBO(ϕ) =

∫
q(θ | D,ϕ) log

p(θ,D)

q(θ | D,ϕ)
dθ.

Rewriting log p(D) exactly, without Jensen’s inequality:

log p(D) =

∫
q(θ | D,ϕ) log

p(θ,D)

q(θ | D,ϕ)
dθ +

∫
q(θ | D,ϕ) log

q(θ | D,ϕ)

p(θ | D)
dθ.

The first term is the ELBO and the second term is the Kullback-Leibler (KL) divergence between q(θ | D,ϕ)
and the true posterior p(θ | D):

KL(q ∥ p) =

∫
q(θ | D,ϕ) log

q(θ | D,ϕ)

p(θ | D)
dθ.

Thus, we can write:
log p(D) = ELBO(ϕ) + KL(q ∥ p).

The KL divergence KL(q ∥ p) is always non-negative. Therefore:

log p(D) ≥ ELBO(ϕ).

So to conclude, maximizing the ELBO ELBO(ϕ) with respect to the variational parameters ϕ reduces the KL
divergence KL(q ∥ p) and approximates the true posterior p(θ | D). The decomposition is given by:

log p(D) = ELBO(ϕ) + KL(q ∥ p).
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