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Abstract

Recommendation systems are integral to many digital platforms, enabling person-
alized experiences by suggesting products, content, or services tailored to user
preferences. This project explores various machine learning methods, ranging
from basic algorithms to advanced deep learning techniques, aiming to identify
effective strategies for delivering high-quality recommendations. Using the 2023
Amazon Reviews dataset, we evaluate these approaches to provide insights into
their performance and implementation in real-world scenarios. All our experi-
ments are available in this Github repository, where you can find the models code,
some theoretical explanations and data visualization.

1 Introduction

Recommendation systems are a critical component of modern digital platforms, offering person-
alized user experiences by predicting preferences based on historical data. These systems rely on
implicit feedback, such as user-item interactions, or explicit information, including ratings and re-
views. Enriched metadata, such as product descriptions, prices, and features, further enhances their
predictive capabilities.

The primary goal of this project is to evaluate and compare multiple machine learning approaches,
ranging from foundational models to sophisticated deep learning techniques, as outlined in the ex-
isting literature. By systematically analyzing these methods, we aim to identify strategies that max-
imize recommendation quality while maintaining computational efficiency.

Figure 1: Illustration of the recommendation mechanism. Source: Medium post

https://github.com/arazig/Advanced-ML-project.git
https://rajputlakhveer.medium.com/building-a-powerful-recommendation-system-step-by-step-guide-for-your-application-01a9ccdb7be3


We would like to point out that in this project, we’re focusing in particular on methods based on
learning and optimization based on Koren et al. [2009] and He et al. [2017] works, although we’ll
also be presenting deterministic methods such as cosine comparison and singular value decomposi-
tion.

2 Modeling and Results

2.1 User Similarity Recommendations

Basic models are based on user similarity, leveraging historical data to match user preferences, wich
form the baseline for our analysis. Cosine similarity, is a common metric used in such models. The
global idea is that it measures the similarity between two users by calculating the cosine of the angle
between their preference vectors. It is what is called collaborative filtering (cf figure 1).

These vectors typically represent user interactions with items (for instance it can be ratings or inter-
actions clicks). A cosine similarity value of 1 indicates perfectly aligned preferences, while a value
of 0 indicates orthogonal, or no shared preferences. By identifying users with high similarity, the
model can recommends items preferred by similar users. In our context the similarity formula is
given by :

Cosine Similarity(u, v) =
∑

i ru,i · rv,i√∑
i r

2
u,i ·

√∑
i r

2
v,i

• Where u and v represent two users.

• and ru,i and rv,i are the ratings of users u and v for item i.

2.1.1 SVD

Singular Value Decomposition is a foundational method in recommendation systems, used to de-
compose the user-item interaction matrix into three matrices: user features, singular values, and
item features.

R ≈ UΣV T

This decomposition identifies latent features that capture patterns in user preferences and item at-
tributes, enabling predictions of missing ratings. The figure 2 shows a visual representation of
users and itemp from the same dataset. However, SVD can be computationally expensive for large
datasets due to its reliance on matrix factorization of potentially massive interaction matrices. The
cost increases significantly with the number of users and items, making scalability a challenge.

To address this, dimensionality reduction is often applied by retaining only the top-k singular values
and their corresponding singular vectors. This reduces computational requirements and storage
while maintaining the most critical information. However, as it’s show on the figure 5, this trade-off
sacrifices some precision, as it eliminates less significant features that may still contribute to the
recommendations.

Despite its utility, standard SVD and similar methods require the matrix to be fully populated, typi-
cally necessitating the imputation of missing values, which can introduce bias. This limitation leads
to the exploration of matrix factorization learning techniques such as Alternating Least Squares and
Stochastic Gradient Descent. These methods are designed for sparse data, offering more scalable
and efficient approaches to recommendation systems by directly optimizing on the observed inter-
actions.

2.2 Matrix Factorization

Matrix factorization plays a key role in collaborative filtering, where it is used to uncover latent
factors that explain patterns in user-item interactions. The method works by decomposing a large
user-item interaction matrix R into two smaller matrices: the User Matrix Q which encodes latent
features of users, and the Item Matrix which encodes latent features of items. The latent features are
hidden or underlying characteristics that are not directly observed but can be inferred from the data.
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Figure 2: 3D visualization of user (left) and product (right) embeddings, showing the spatial clus-
tering of products and users in the embedding space.

In this context, latent features can represent abstract properties of users and items that influence their
interactions.

Therefore, the objective is to approximate this user-item interaction matrix using the product of these
two matrices:

R ≈ Q · P⊤

where R represents the original user-item interaction matrix.

2.2.1 Stochastic Gradient descent Algorithm

As it’s said above, there is many optimization techniques. For instance in the Alternating Least
Squares, we fix P and solve for Q, then fix Q and solve for P . But, we decided to use Stochas-
tic Gradient Descent by updating Q and P by iteratively taking gradient steps on a specific loss
function.

The iterative training of this method helps decompose the user-item interaction matrix, uncovering
latent factors that drive user preferences. Overall the idea is the same as the classic SVD, Matrix
factorization by learning predicts missing entries in the user-item interaction matrix by decomposing
it into user embeddings and item embeddings.The first one captures user preferences in a latent
space while the second captures item characteristics in the same latent space.

Loss function

The objective of matrix factorization is to minimize the squared error between the predicted and
observed values in the user-item interaction matrix, with a regularization term to prevent overfitting.
As in the paper Koren et al. [2009] we define :

L =
∑

(i,j)∈R

(
Rij −Qi · P⊤

j

)2
+ λ

(
∥Qi∥2 + ∥Pj∥2

)
Where:

• R: User-item interaction matrix.
• Rij : Observed rating for user i and item j.
• Qi: Latent vector for user i.
• Pj : Latent vector for item j.
• λ: Regularization parameter to prevent overfitting.
• ∥Qi∥2 and ∥Pj∥2: Regularization terms for Q and P .
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Algorithm 1 Matrix Factorization Algorithm
1: Input: User-item matrix R, regularization parameter λ, number of latent features k, learning

rate η, max iterations T .
2: Step 1: Initialize Matrices
3: Randomly initialize Q ∈ Rm×k and P ∈ Rn×k.
4: (Optional) Use metadata embeddings for informed initialization.
5: Step 2: Optimize for Loss Function
6: while not converged or iteration < T do
7: for (i, j) ∈ R do
8: Compute prediction error eij = Rij −Qi · P⊤

j .
9: Update Qi:

Qi ← Qi + η (eijPj − λQi)

10: Update Pj :
Pj ← Pj + η (eijQi − λPj)

11: end for
12: end while
13: Output: Matrices Q and P with dimensions m× k and n× k respectively.

In this algorithm, the update rules are based on the stochastic gradient descent algorithm. We cal-
culate the derivative of the loss function with respect to the latent vectors, its inverse gives us a
direction of descent.

Therefore, this approach provides an approximation of the rating. The predicted rating for user i and
item j is simply given by:

R̂ij = Qi · P⊤
j

In the next steps of the project, we transform the problem into a binary recommendation framework
to improve the relevance of the recommendations by focusing on interactions. This approach is
commonly referred to as implicit feedback. In this case, the loss function is called the Binary
Cross entropy. She comes from the negative log-likelihood of a Bernoulli distribution, measuring
the difference between predicted probabilities and actual binary labels (interaction or not) and is
defined as:

Lbinary = −
∑

(u,i)∈R

(rui log(r̂ui) + (1− rui) log(1− r̂ui)) ,

where:

• rui ∈ {0, 1} represents the interaction (or lack thereof) between user u and item i,

• r̂ui = σ(p⊤
u qi) is the predicted interaction probability,

• σ(x) = 1
1+e−x is the sigmoid function.

To optimize this loss function, we compute its gradient with respect to the latent vectors (pu and qi)
as before.

∂Lbinary

∂qi
=

∑
(u,i)∈R

(r̂ui − rui)pu + 2λqi,
∂Lbinary

∂pu
=

∑
(u,i)∈R

(r̂ui − rui)qi + 2λpu.

These gradients guide the updates of the latent vectors during training to minimize the binary loss
function and improve the recommendation quality.

2.3 Neural Collaborative Filtering

Deep learning models, including neural collaborative filtering, are implemented to capture complex,
non-linear relationships between users and items, enhancing recommendation quality.
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In He et al. [2017], neural collaborative filtering is introduced as a multi-layer representation to
model user-item interaction. Two models have been proposed in the literature involving neural
collaborative filtering: a Multi-Layer Perceptron (MLP) using a non-linear kernel to learn the user-
item interaction function and a combination of the MF algorithm and the MLP.

2.3.1 Multi-Layer Perceptron

As shown in Figure 2, NCF uses a one-hot encoding of both users and items. These sparse vectors
are projected into a user embedding space and item embedding space as dense vectors.

In the MLP configuration, the dense representation of both users and items, which we denote as
pu and qi, are concatenated before passing them to the MLP hidden layers. In other words, the
user-item interaction function is obtained using the following equations:

z1 =

[
pu
qi

]
zj = aj(W

T
j zj−1 + bj) , for j = 2, ..., L

yui = σ(hT
LzL−1)

where Wj , bj , and aj denote the weight matrix, bias vector, and activation function of the j-th layer
for j = 2, ..., L where L is the number of layers (the first layer is a concatenation layer). In the final
layer, as the problem is binary, we apply the sigmoid function denoted σ to a linear combination
of the last activation. The different activations of the hidden layers enable us to use non-linearity
to model the user-item interaction function. In the structure implemented for our experiments, we
opted for the ReLU function as the activation function for each hidden layer, which is well-suited
for sparse data, as it encourages sparse activations.

2.3.2 Neural Matrix Factorization

As stacking different models has been proven to be an efficient method in machine learning, com-
bining matrix factorization and an MLP, as shown in Figure 2, can be a good approach to estimate
the user-item interaction.

For this, we use two different embeddings for users and items: one used for the matrix factorization
algorithm and one for the MLP. For the matrix factorization part, we use the element-wise product
of the two dense vectors of the first embedding for each of the users and items:

ϕMF = pGu ⊙ qGi

where pGu and qGi are respectively the input matrix factorization dense vectors for user u and item i,
and ϕMF is the output of the matrix factorization. For the MLP part, we use the two dense vectors
of the second embedding for each of the items and users, as described earlier. The output of the
MLP is given by:

z1 =

[
pu
qi

]
zj = aj(W

T
j zj−1 + bj) , for j = 2, ..., L

ϕMLP = zL

where Wj , bj , and aj denote the weight matrix, bias vector, and activation function of the j-th layer
for j = 2, ..., L where L is the number of layers (the first layer is a concatenation layer). The two
outputs are concatenated and we apply the sigmoid function to them:

yui = hT

[
ϕMF

ϕMLP

]
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2.3.3 Learning in NCF

To update the parameters of these two models, we use the binary cross-entropy loss defined as:

L = −
∑

(u,i)∈Y∪Y−

[yui log(ŷui) + (1− yui) log(1− ŷui)]

where yui is the ground-truth, ŷui is the probability of interaction between user u and item i obtained
with the sigmoid function of the two models. The set Y contains all the observed interactions
between users and items, and the set Y− contains uniformly sampled negative samples, which are
pairs of users and items with unobserved interactions (yui = 0).

3 Experiments

In this section, we will evaluate all models with a real dataset. Since these models predict whether
there is an interaction between each user and item, we will recommend for each user new items with
which there is most likely an interaction and evaluate these recommendations with recommender
metrics.

3.1 Dataset and Methodology

3.1.1 Amazon Reviews 2023 Dataset

The dataset used in this study is the large-scale Amazon Reviews dataset, collected in 2023 by
McAuley Lab1. It provides a comprehensive view of user interactions and product details, making
it an excellent resource for recommendation system research. The dataset includes detailed user
reviews, comprising ratings, textual feedback, and helpfulness votes. It also features rich item meta-
data, such as product descriptions, prices, and raw images, alongside graphs representing user-item
interactions and ”bought-together” relationships. This diverse and extensive dataset supports both
user-centric and item-centric analyses, facilitating the development and benchmarking of advanced
recommendation models.

3.1.2 Evaluation

Our methodology involves preprocessing the dataset to clean and structure the data for machine
learning algorithms. We evaluate various models, splitting the data into training, and testing sets to
ensure robust performance assessments.

To evaluate the performance of our recommendation models, we employed the following training
and evaluation procedure. The model was trained by minimizing a defined loss function, optimizing
the learned latent factors and neural network’s weights for users and items. For evaluation, we split
the dataset using a ”Leave-Two-Out” strategy, ensuring that the last two items interacted with was
used as the test instance for each user. The model’s performance was assessed using four key metrics:
Relative Absolute Error and Root Mean Squared Error for the matrix factorization and the binary
cross-entropy, which quantify the training inference of the model. As for recommender systems
metrics we use Hit Ratio (HR), Normalized Discounted Cumulative Gain (NDCG), precision@K
and recall@K, which evaluate the quality of top-K recommendations. HR measures the frequency
with which the relevant item appears in the top-K recommendations, while NDCG assesses the
ranking quality by assigning higher importance to relevant items appearing earlier in the list.

Recommenders Metrics

The Hit Ratio (HR) measures whether at least one relevant item is present among the top K recom-
mended items:

HR =
Number of hits

Total number of test cases

1https://amazon-reviews-2023.github.io
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The Normalized Discounted Cumulative Gain (NDCG) evaluates the quality of recommendations
by considering the positions of relevant items in the recommended list:

DCG@K =

K∑
i=1

reli
log2(i+ 1)

NDCG@K =
DCG@K

IDCG@K

where reli ∈ {0, 1} is the relevance of the item at position i, and IDCG@K is the ideal DCG (with
all relevant items ranked at the top).

The Precision@K measures the proportion of relevant items among the top K recommended items:

Precision@K =
Number of relevant items in the top K

K

The Recall@K measures the proportion of relevant items retrieved among the top K recommenda-
tions relative to the total number of relevant items (2 items in our case) available:

Recall@K =
Number of relevant items in the top K

Total number of relevant items

3.2 Experiments

First, we evaluate our models with fixed parameters. We choose to recommend 10 items (topK =
10).

To make a comparison between the NeuMf and MLP models proposed by He et al. [2017], we use
the adaptation of the matrix factorization algorithm for implicit feedback presented at the end of
section 2.1.1.

The model BMF is trained with fixed learning rate of 0.01. Unlike Koren et al. [2009] here we use
an adpatative regularization value which is a λ > 0 divided by the frequency of user or items. In
fact, in many recommendation systems, the amount of interaction data is highly imbalanced: Some
users have very few interactions, while others have many. Similarly, some items are very popular,
while others are rarely interacted with.

Applying a uniform regularization term (e.g λ = 0.1) would penalize all parameters equally, regard-
less of the interaction frequency. For users or items with fewer interactions, uniform regularization
can dominate the gradients, leading to underfitting. We train the model over 50 epochs.

The architecture of the MLP used in both models consists of 4 layers with 64, 32, 16, and 8 neurons,
respectively, as in He et al. [2017]. The choice of this architecture is motivated by the similar order of
magnitude of data sizes. To train the MLP, we use a learning rate of 0.1 and mini-batch training with
a batch size of 256 samples. Moreover, to train our models, we sample a certain number of negative
items for each user to avoid unbalanced data cases due to the sparsity of the data. For this parameter,
we chose to sample 4 negative samples for each user. It is important to note that these parameters
were fine-tuned manually due to the computational costs associated with such algorithms. As for the
optimizer, we chose AdamW, which is an improved version of Adam that incorporates weight decay
regularization to prevent overfitting. In AdamW, the weight decay is decoupled from the gradient
updates, which allows for better regularization during training:

θt = (1− ηλ)θt−1 −
η

√
vt + ϵ

mt

where θt is the parameter (weight or embedding matrix) at iteration t, η is the learning rate, vt is
the moving average of squared gradients, ϵ is a small constant to avoid division by zero, mt is the
moving average of gradients, and λ is the weight decay factor.

First, we evaluate the loss evolution for our models. For the MLP and NeuMF models, we restrict
the evaluation to the losses over 20 epochs, even though the loss continues to decrease as shown
in the figure. This choice is motivated by the overfitting observed around the 10th iteration, as the
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Figure 3: Loss evolution for NeuMF and MLP models along 20 epochs

recommendation metrics reach their peak at this epoch and start to decline thereafter. This might be
the cost of choosing such complex models, in addition to their considerable computational cost.

Then, we illustrate the impact of varying the number of recommended items (topK) on the perfor-
mance of the model on the test set with the recommendation systems metrics. (figure 4)

Figure 4: Recommendation metrics evaluation on Leave-two-out test set for Binary Matrix factor-
ization, Multi-layer Perceptron and Neural Matrix Factorization

We note that on the data used in this experiment, the matrix factorization model applied to im-
plicit feedback outperforms NeuMF and MLP across all metrics (cf figure 4), making it the best-
performing model in this comparison, regardless of the topK number chosen.

The gap between BMF and NeuMF narrows as topK increases, until both models provide similar
performance for k= 10 (cf table 1). MLP’s performance is much weaker than the other two methods.
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Model HR NDCG Precision@k Recall@k
MLP 0.211083 0.062519 0.021989 0.109947
NeuMF 0.393969 0.135664 0.045467 0.227335
BMF 0.395340 0.149782 0.045408 0.227041

Table 1: Summary of Metrics for Different Models at k = 10, leave-2-out test set

Also, Precision decreases with larger topK, highlighting the trade-off between retrieving more items
(recall) and maintaining high accuracy (precision).

4 Conclusion

This study systematically evaluates various machine learning approaches for recommendation sys-
tems, emphasizing their strengths and limitations in delivering personalized user experiences. By
utilizing the 2023 Amazon Reviews dataset, we demonstrate the potential of advanced models, such
as neural collaborative filtering, in improving recommendation accuracy.

We observe implicit feedback matrix Factorization outperforming NeuMF and MLP, which is inter-
esting and we try to understand why. In one hand, The first point to emphasize is that latent Feature
Learning of Matrix factorization methods like BMF are highly effective in capturing latent user and
item features from implicit feedback. These latent features often align closely with the underlying
patterns in the data, resulting in better generalization for recommendation tasks.

Also, BMF’s simpler structure and reliance on regularized factorization of observed interactions
allow it to gives better results, especially with sparse implicit feedback datasets which is our case.
NeuMF and MLP, being more complex neural models, may overfit the sparse data or fail to learn
meaningful patterns from the limited signals.

We see that for high topK, the marginal advantage of BMF over NeuMF diminishes because both
models start including more items that are moderately relevant, diluting the distinction in their per-
formance. In other hand, we oberve a weaker performance of MLP model. We know that MLP
based models often require careful design of input features and sufficient data to perform well. In
the absence of explicit features or when working with implicit feedback, their general purpose nature
may hinder their ability to model complex patterns compared to specialized approaches like matrix
factorization. The sparcity may also impact his performance.

To conclude, the performance of BMF demonstrates the strength of matrix factorization in leverag-
ing implicit feedback to learn meaningful latent factors for recommendation.

There are many other ways of approaching the field of recommendation with more or less complex
methods that we haven’t explored on in this project. In particular, the use of metadata to enrich the
representation of objects and users in more complex latent spaces. The use of hybrid approaches is
also very important in this kind of project and give interesting results.
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5 Appendix

Figure 5: SVD : Trade-off analysis between dimensionality reduction, reconstruction time, and
reconstruction error.
We select a specific number of top singular values, along with their corresponding singular vectors,
to reconstruct the matrix. By limiting the number of singular values and vectors used, we perform a
reduced-dimension reconstruction, focusing only on the most significant components of the matrix
as determined by the linear algebra SVD approach.
We measure the time taken for the reduced-dimension reconstructions and compare it to the time
required for full reconstruction. This demonstrates how computation time decreases as top singular
values number is reduced. This analysis is important because it highlights the trade-off between
accuracy and computational efficiency.

Figure 6: Explicit feedback Matrix factorization training loss evolution.
In the case of explicit feedback (ratings from 1 to 5) MAE measures the average magnitude of
errors in predictions, providing a straightforward interpretation of model accuracy. RMSE highlights
larger errors by penalizing them more heavily, making it sensitive to outliers.Observation : MAE
and RMSE values decrease over epochs, indicating improved prediction accuracy and reduced error
magnitude as the model trains.

Derivation of Binary Cross-Entropy Loss

For implicit feedback we are trying to optimize a specifique loss function adapted to binary problems. We show
here how to recover the formula in the general case :

For binary classification, the likelihood for a single observation is:

P (y|ŷ) = ŷy(1− ŷ)1−y,

where y ∈ {0, 1} is the true label and ŷ ∈ [0, 1] is the predicted probability.
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The log-likelihood is:
logP (y|ŷ) = y log(ŷ) + (1− y) log(1− ŷ).

We define the negative log-likelihood and we want to minimize it :

ℓ(ŷ, y) = −
(
y log(ŷ) + (1− y) log(1− ŷ)

)
.

Finaly, for N observations, the total loss is:

L = − 1

N

N∑
i=1

(
yi log(ŷi) + (1− yi) log(1− ŷi)

)
.

Results for BMF

Figure 7: Evolution of HR, NDCG, Precision, and Recall over epochs for the leave-2-out test set.
This plots concern Implicit Feedback Matrix Fcatorization. All metrics demonstrate consistent im-
provement with increasing epochs, indicating enhanced model performance through training.

Figure 8: Evolution of BMF train accuracy and average loss. This plots concern Implicit Feedback
Matrix Fcatorization.
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GitHub

GitHub Repository link : https://github.com/arazig/Advanced-ML-project.git
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